Skip to main content

Advertisement

Log in

The first-principles design of ductile refractory alloys

  • Refractory Metals
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of this work is to predict elastic and thermodynamic properties of chromium-based alloys based on first-principles calculations and to demonstrate an appropriate computational approach to develop new materials for high-temperature applications in energy systems. In this study, Poisson ratio is used as a screening parameter to identify ductilizing additives to the refractory alloys. The results predict that elements such as Ti, V, Zr, Nb, Hf, and Ta show potential as ductilizers in Cr while Al, Ge, and Ga are predicted to decrease the ductility of Cr. Experimental evidence, where available, validates these predictions. The purpose of this work is to predict elastic and thermodynamic properties of chromium-based alloys based on first-principles calculations and to demonstrate an appropriate computational approach to develop new materials for high-temperature applications in energy systems. In this study, Poisson ratio is used as a screening parameter to identify ductilizing additives to the refractory alloys. The results predict that elements such as Ti, V, Zr, Nb, Hf, and Ta show potential as ductilizers in Cr while Al, Ge, and Ga are predicted to decrease the ductility of Cr. Experimental evidence, where available, validates these predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.P. Bewlay et al., Metall. Mater. Trans. A, 34A (2003), pp. 2043–2052.

    Article  CAS  Google Scholar 

  2. P. Jehanno et al., Metall. Mater. Trans. A, 36A (2005), pp. 515–523.

    Article  CAS  Google Scholar 

  3. Ö.N. Doğan, Oxidation of Metals, 69 (2008), pp. 233–247.

    Article  Google Scholar 

  4. W.D. Klopp, J. Metals, 21 (1969), pp. 23–32.

    CAS  Google Scholar 

  5. Y.F. Gu, H. Harada, and Y. Ro, JOM, 56(9) (2004), pp. 28–33.

    Article  CAS  Google Scholar 

  6. M.J. Mehl et al., Phys. Rev. B, 41 (1990), pp. 10311–10323.

    Article  CAS  Google Scholar 

  7. U.V. Waghmare et al., Model. Simul. Mater. Sci. Eng., 6 (1998), pp. 493–506.

    Article  CAS  Google Scholar 

  8. W.T. Geng, Phys. Rev. B, 68 (2003), art. No. 233402.

  9. N.I. Medvedeva, Y.N. Gornostyrev, and A.J. Freeman, Phys. Rev. B, 67 (2003), art. No. 134204.

  10. L. Vitos, P.A. Korzhavyi, and B. Johansson, Nature Mater., 2 (2003), pp. 25–28.

    Article  CAS  Google Scholar 

  11. M.C. Gao et al., Metall. Mater. Trans. A, 36A (2005), pp. 3269–3279.

    Article  CAS  Google Scholar 

  12. C.B. Geller et al., Scripta Mater., 52 (2005), pp. 205–210.

    Article  CAS  Google Scholar 

  13. S. Curtarolo, D. Morgan, and G. Ceder, CALPHAD, 29 (2005), pp. 163–211.

    Article  CAS  Google Scholar 

  14. M.C. Gao, A.D. Rollett, and M. Widom, CALPHAD, 30 (2006), pp. 341–348.

    Article  CAS  Google Scholar 

  15. M.C. Gao, A.D. Rollett, and M. Widom, Phys. Rev. B, 75 (2007), art. No. 174120

  16. M.C. Gao et al., Metall. Mater. Trans. A, 38A (2007), pp. 2540–2551.

    Article  CAS  Google Scholar 

  17. S.F. Pugh, Phil. Mag., 45 (1954), pp. 823–843.

    CAS  Google Scholar 

  18. A.H. Cottrell, Advances in Physical Metallurgy, ed. J.A. Charles and G.C. Smith (London: Institute of Metals, 1990), pp. 181–187.

    Google Scholar 

  19. J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), art. No. 255506.

  20. J.J. Lewandowski, W.H. Wang, and A.L. Greer, Phil. Mag. Lett., 85 (2005), pp. 77–87.

    Article  CAS  Google Scholar 

  21. T.B. Massalski et al., Binary Alloy Phase Diagrams (Materials Park, OH: ASM International, 1995).

    Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B, 47 (1993), pp. 558–561.

    Article  CAS  Google Scholar 

  23. G. Kresse and J. Furthmueller, Phys. Rev. B, 54 (1996), pp. 11169–11186.

    Article  CAS  Google Scholar 

  24. P.E. Blöchl, Phys. Rev. B, 50 (1994), pp. 17953–17979.

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865–3868.

    Article  CAS  Google Scholar 

  26. A.V. Hershey, J. Appl. Mech., 21 (1954), pp. 236–240.

    CAS  Google Scholar 

  27. H. Kurishita, T. Kuwabara, and M. Hasegawa, Mat. Sci. Eng. A, 433 (2006), pp.32–38.

    Article  Google Scholar 

  28. C.S. Wukusick, Refractory Metals and Alloys IV—Research and Development (New York: Gordon and Breach Science Publishers, 1967), pp. 231–245.

    Google Scholar 

  29. M.P. Brady et al., Scripta Mater., 52 (2005), pp. 815–819.

    Article  CAS  Google Scholar 

  30. U. Holzwarth and H. Stamm, J. Nucl. Mater., 300 (2002), pp. 161–177.

    Article  CAS  Google Scholar 

  31. M.P. Brady, private communications (2008).

  32. J.R. Rice and R. Thomson, Phil. Mag., 19 (1974), pp. 73–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M.C., Doğan, Ö.N., King, P. et al. The first-principles design of ductile refractory alloys. JOM 60, 61–65 (2008). https://doi.org/10.1007/s11837-008-0092-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0092-1

Keywords

Navigation