Skip to main content
Log in

Phospholipid biosynthetic enzymes in human brain

  • Article
  • Published:
Lipids

Abstract

Growing evidence suggests an involvement of brain membrane phospholipid metabolism in a variety of neurodegenerative and psychiatric conditions. This has prompted the use of drugs (e.g., CDPcholine) aimed at elevating the rate of neural membrane synthesis. However, no information is available regarding the human brain enzymes of phospholipid synthesis which these drugs affect. Thus, the objective of our study was to characterize the enzymes involved, in particular, whether differences existed in the relative affinity of substrates for the enzymes of phosphatidylethanolamine (PE) compared to those of phosphatidylcholine (PC) synthesis. The concentration of choline in rapidly frozen human brain biopsies ranged from 32–186 nmol/g tissue, a concentration similar to that determined previously for ethanolamine. Since human brain ethanolamine kinase possessed a much lower affinity for ethanolamine (K m=460 μM) than choline kinase did for choline (K m=17 μM), the activity of ethanolamine kinase in vivo may be more dependent on substrate availability than that of choline kinase. In addition, whereas ethanolamine kinase was inhibited by choline, and to a lesser extent by phosphocholine, choline kinase activity was unaffected by the presence of ethanolamine, or phosphoethanolamine, and only weakly inhibited by phosphocholine. Phosphoethanolamine cytidylyl-transferase (PECT) and phosphocholine cytidylyltransferase (PCCT) also displayed dissimilar characteristics, with PECT and PCCT being located predominantly in the cytosolic and particulate fractions, respectively. Both PECT and PCCT exhibited a low affinity for CTP (Km approximately 1.2 mM), suggesting that the activities of these enzymes, and by implication, the rate of phospholipid synthesis, are highly dependent upon the cellular concentration of CTP. In conclusion, our data indicate different regulatory properties of PE and PC synthesis in human brain, and suggest that the rate of PE synthesis may be more dependent upon substrate (ethanolamine) availability than that of PC synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PC:

phosphatidylcholine

PCCT:

phosphocholine cytidylyltransferase

PE:

phosphatidylethanolamine

PECT:

phosphoethanolamine cytidylyltransferase

TLC:

thin-layer chromatography

References

  1. Kent, C. (1991) Regulation of Phosphatidylcholine Biosynthesis, Prog. Lipid Res. 29, 87–105.

    Article  Google Scholar 

  2. Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H., and Wurtman, R.J. (1992) Evidence for a Membrane Defect in Alzheimer Disease Brain, Proc. Natl. Acad. Sci. USA 89, 1671–1675.

    Article  PubMed  CAS  Google Scholar 

  3. Cuénod, C.-A., Kaplan, D.B., Michot, J.-L., Jehenson, P., Leroy-Willig, A., Forette, F., Syrota, A., and Boller, F. (1995) Phospholipid Abnormalities in Early Alzheimer’s Disease, Arch. Neurol. 52, 89–94.

    PubMed  Google Scholar 

  4. Rordorf, G., Uemura, Y., and Bonventre, J.V. (1991) Characterisation of Phospholipase A2 (PLA2) Activity in Gerbil Brain: Enhanced Activities of Cytosolic, Mitochondrial, and Microsomal Forms After Ischemia and Reperfusion, J. Neurosci. 11, 1829–1836.

    PubMed  CAS  Google Scholar 

  5. Moto, A., Hirashima, Y., Endo, S., and Takaku, A. (1991) Changes in Lipid Metabolites and Enzymes in Rat Brain Due to Ischemia and Recirculation, Mol. Chem. Neuropath. 14, 35–51.

    Article  CAS  Google Scholar 

  6. Pettegrew, J.W., Keshavan, M.S., and Minshew, N.J. (1993) 31P Nuclear Magnetic Resonance Spectroscopy: Neurodevelopment and Schizophrenia, J. Neural Transm. 36, 35–53.

    Google Scholar 

  7. Stanley, J.A., Williamson, P.C., Drost, D.J., Carr, T.J., Rylett, J., Malla, A., and Thompson, T. (1995) An in vivo Study of the Prefrontal Cortex of Schizophrenic Patients at Different Stages of Illness via Phosphorus Magnetic Resonance Spectroscopy, Arch. Gen. Psychiatry 52, 399–406.

    PubMed  CAS  Google Scholar 

  8. Ross, B.M., Hudson, C., Erlich, J., Warsh, J.J., and Kish, S.J. Increased Phospholipid Breakdown in Schizophrenia: Evidence for the Involvement of a Calcium-Independent Phospholipase A2 Activity, Arch. Gen. Psychiatry, in press.

  9. Nitsch, R.M., Blusztajn, J.K., Doyle, F.M., Robitaille, Y., Wurtman, R.J., Growdon, J.H., and Kish, S.J. (1993) Phospholipid Metabolite Levels Are Altered in Cerebral Cortex of Patients with Dominantly Inherited Olivopontocerebellar Atrophy, Neurosci. Lett. 161, 191–194.

    Article  PubMed  CAS  Google Scholar 

  10. Kish, S.J., Robitaille, Y., Ball, M., Gilbert, J., Deck, J.H.N., Chang, L.J., and Schut, L. (1990) Glycerophosphoethanolamine Concentration Is Elevated in Brain of Patients with Dominantly Inherited Olivopontocerebellar Atrophy, Neurosci. Lett. 120, 209–211.

    Article  PubMed  CAS  Google Scholar 

  11. Lopez-Coviella, I., and Wurtman, R.J. (1992) Enhancement by Cytidine of Brain Membrane Phospholipid Synthesis, J. Neurochem. 59, 338–343.

    Article  Google Scholar 

  12. Clark, W.M., and Warach, S.J. (1996) Randomized Dose Response Trial of Citicoline in Acute Ischemia Stroke Patients, Neurology 46 (Suppl.), A424.

    Google Scholar 

  13. Tazaki, Y., Sakai, F., Otomo, E., Kutsuzawa, T., Kameyama, M., Omae, T., Fujishima, M., and Sakuma, A. (1988) Treatment of Acute Cerebral Infarction with a Choline Precursor in a Multicenter Double-Blind Placebo Controlled Study, Stroke 19, 1073–1080.

    Google Scholar 

  14. Catalyad, M.V., Catalyud Perez, J.B., and Aso Escario, J. (1991) Effects of CDP-choline on the Recovery of Patients with Head Injury, J. Neurol. Sci. 103 (suppl.), S15-S18.

    Google Scholar 

  15. Spiers, P.A., Myers, D., Hochandel, G.S., Lieberman, H.R., and Wurtman, R.J. (1996) Citicoline Improves Verbal Memory in Aging, Arch. Neurol. 53, 441–448.

    PubMed  CAS  Google Scholar 

  16. Lopez-Coviella, I., Agut, J., Von Borstel, R., and Wurtman, R.J. (1987) Metabolism of Cytidine (5′)-Diphosphocholine (Citicoline) Following Oral and Intravenous Administration to the Human and Rat, Neurochem. Int. 11, 293–297.

    Article  Google Scholar 

  17. Lopez-Coviella, I., Agut, J., Savci, V., Ortiz, J.A., and Wurtman, R.J. (1995) Evidence That 5′-Cytidinediphosphocholine Can Affect Brain Phospholipid Composition by Increasing Choline and Cytidine Plasma Levels, J. Neurochem. 65, 889–894.

    Article  PubMed  CAS  Google Scholar 

  18. Ross, B.M., and Kish, S.J. (1994) Characterisation of Lysophospholipid Metabolising Enzymes in Human Brain, J. Neurochem. 63, 1839–1848.

    Article  PubMed  CAS  Google Scholar 

  19. Ross, B.M., Sherwin, A.L., and Kish, S.J. (1995) Multiple Forms of the Enzyme Glycerophosphodiesterase Are Present in Human Brain, Lipids 30, 1075–1081.

    PubMed  CAS  Google Scholar 

  20. Sundler, R. (1975) Ethanolamine Cytidylyltransferase, J. Biol. Chem. 250, 8585–8590.

    PubMed  CAS  Google Scholar 

  21. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  22. Fersht, A. (1985) The Basic Equations of Enzyme Kinetics, in Enzyme Structure and Mechanism, pp. 98–120, W.H. Freeman and Company, New York.

    Google Scholar 

  23. Klein, J., Gonzalez, R., Koppen, A., and Loffelholz, K. (1993) Free Choline and Choline Metabolites in Rat Brain and Body Fluids: Sensitive Determination and Implications for Choline Supply to the Brain, Neurochem. Int. 22, 293–300.

    Article  PubMed  CAS  Google Scholar 

  24. Marshall, D.L., De Micheli, E., Bogdanov, M.B., and Wurtman, R.J. (1996) Effects of Ethanolamine (ETN) Administration on ETN and Choline (CH) Levels in Plasma, Brain Extracellular Fluid (ECF) and Brain Tissue, and on Brain Phospholipid Levels in Rats: An in vivo Study, Neurosci. Res. Comm. 18, 87–96.

    Article  CAS  Google Scholar 

  25. Perry, T.L., Hansen, S., and Gandham, S.S. (1981) Postmortem Changes of Amino Compounds in Human and Rat Brain, J. Neurochem. 36, 406–412.

    Article  PubMed  CAS  Google Scholar 

  26. Houweling, M., Tijburg, L.B.M., Vaartjes, W.J., and Van Golde, L.M.G. (1992) Phosphatidylethanolamine Metabolism in Rat Liver After Partial Hepatectomy, Biochem. J. 283, 55–61.

    PubMed  CAS  Google Scholar 

  27. Haines, D.S., and Derksen, D.H. (1972) Changes in Metabolism of Ethanolamine and Its Derivatives in Liver During Fasting, Can. J. Biochem. 53, 51–56.

    Google Scholar 

  28. Schneider, W.J., and Vance, D.E. (1978) Effect of Choline Deficiency on the Enzymes That Synthesize Phosphatidylcholine and Phosphatidylethanolamine in Rat Liver, Eur. J. Biochem. 85, 181–187.

    Article  PubMed  CAS  Google Scholar 

  29. Percy, A.K., and Moore, J.F. (1994) Choline Deficiency in Cultured Adrenal Medullary Cells: Effect on Phosphatidylcholine Biosynthesis, Bioch. Med. Metab. Biol. 51, 169–174.

    Article  CAS  Google Scholar 

  30. Zelinski, T.A., and Choy, P.C. (1982) Choline Regulates Phosphatidylethanolamine Biosynthesis in Isolated Hamster Heart, J. Biol. Chem. 257, 13201–13204.

    PubMed  CAS  Google Scholar 

  31. Mages, F., Rey, C., Fonplut, P., and Pacheco, H. (1988) Kinetic and Biochemical Properties of CTP: Choline-Phosphate Cytidylyltransferase from the Rat Brain, Eur. J. Biochem. 178, 367–372.

    Article  PubMed  CAS  Google Scholar 

  32. Tuburg, L.B.M., Vermeulen, P.S., and Van Golde, L.M.G. (1992) Ethanolamine Cytidylyltransferase, Meth. Enzymol. 209, 258–263.

    Article  Google Scholar 

  33. Vermeulen, P.S., Tijburg, L.B.M., Geelen, M.J.H., and van Golde, L.M.G. (1993) Immunological Characterisation, Lipid Dependence, and Subcellular Localisation of CTP:Phosphoethanolamine Cytidylyltransferase Purified from Rat Liver, J. Biol. Chem. 268, 7458–7464.

    PubMed  CAS  Google Scholar 

  34. Wang, Y., and Kent, C. (1995) Effects of Altered Phosphorylation Sites on the Properties of CTP:Phosphocholine Cytidylyltransferase, J. Biol. Chem. 270, 17843–17849.

    Article  PubMed  CAS  Google Scholar 

  35. Yang, W., Boggs, K.P., and Jackowski, S. (1995) The Association of Lipid Activators with the Amphipathic Helical Domain of CTP:Phosphocholine Cytidylyltransferase Accelerates Catalysis by Increasing the Affinity of the Enzyme for CTP, J. Biol. Chem. 270, 23951–23957.

    Article  PubMed  CAS  Google Scholar 

  36. Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K. (1987) Mechanism of Arachidonic Acid Liberation During Ischemia in Gerbil Cerebral Cortex, J. Neurochem. 48, 503–509.

    Article  PubMed  CAS  Google Scholar 

  37. Lopez-Coviella, I., Agut, J., and Wurtman, R.J. (1992) Effects of Orally Administered Cytidine 5′-Diphosphate Choline on Brain Phospholipid Content, J. Nutr. Biochem. 3, 313–315.

    Article  Google Scholar 

  38. Savci, V., and Wurtman, R.J. (1995) Effect of Cytidine on Membrane Phospholipid Synthesis in Rat Striatal Slices, J. Neurochem. 64, 378–384.

    Article  PubMed  CAS  Google Scholar 

  39. Agut, J., Lopez-Coviella, I., Ortiz, J.A., and Wurtman, R.J. (1993) Oral Cytidine 5′-Diphosphate Choline Administration to Rats Increases Brain Phospholipid Levels, Ann. N.Y. Acad. Sci. 695, 318–320.

    PubMed  CAS  Google Scholar 

  40. Weinhold, P.A., Charles, L.G., and Feldman, D.A. (1991) Microsomal CTP:Choline Phosphate Cytidylyltransferase: Kinetic Mechanism of Fatty Acid Stimulation, Biochim. Biophys. Acta 1086, 57–62.

    PubMed  CAS  Google Scholar 

  41. Sweitzer, T.D., and Kent, C. (1994) Expression of Wild-Type and Mutant Rat Liver CTP:Phosphocholine Cytidylyltransferase in a Cytidylyltransferase-Deficient Chinese Hamster Ovary Cell Line, Arch. Biochem. Biophys. 311, 107–116.

    Article  PubMed  CAS  Google Scholar 

  42. Beley, A., Bertrand, N., and Beley, P. (1991) Cerebral Ischemia: Changes in Brain Choline, Acetylcholine, and Other Monoamines as Related to Energy Metabolism, Neurochem. Res. 16, 555–561.

    Article  PubMed  CAS  Google Scholar 

  43. Millington, W.R., and Wurtman, R.J. (1982) Choline Administration Elevates Brain Phosphorylcholine Concentrations, J. Neurochem. 38, 1748–1752.

    Article  PubMed  CAS  Google Scholar 

  44. George, T.P, Morash, S.C., Cook, H.W., Byers, D.M., Palmer, F.B., and Spence, M.W. Phosphatidylcholine Biosynthesis in Cultured Glioma Cells: Evidence for the Channeling of Intermediates, Biochim. Biophys. Acta 1004, 283–291.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ross, B.M., Moszczynska, A., Blusztajn, J.K. et al. Phospholipid biosynthetic enzymes in human brain. Lipids 32, 351–358 (1997). https://doi.org/10.1007/s11745-997-0044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0044-x

Keywords

Navigation