Skip to main content
Log in

Properties and Applications of Varistor–Transistor Hybrid Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The nonlinear current–voltage characteristics of a varistor device are modified with the help of external agents, resulting in tuned varistor–transistor hybrid devices with multiple applications. The substrate used to produce these hybrid devices belongs to the modified iron titanate family with chemical formula 0.55FeTiO3·0.45Fe2O3 (IHC45), which is a prominent member of the ilmenite–hematite solid-solution series. It is a wide-bandgap magnetic oxide semiconductor. Electrical resistivity and Seebeck coefficient measurements from room temperature to about 700°C confirm that it retains its p-type nature for the entire temperature range. The direct-current (DC) and alternating-current (AC) properties of these hybrid devices are discussed and their applications identified. It is shown here that such varistor embedded ceramic transistors with many interesting properties and applications can be mass produced using incredibly simple structures. The tuned varistors by themselves can be used for current amplification and band-pass filters. The transistors on the other hand could be used to produce sensors, voltage-controlled current sources, current-controlled voltage sources, signal amplifiers, and low-band-pass filters. We believe that these devices could be suitable for a number of applications in consumer and defense electronics, high-temperature and space electronics, bioelectronics, and possibly also for electronics specific to handheld devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bob McGarrah, Transistor History 101, transistorhistory.50webs.com/xstrhist.html. Accessed 2013.

  2. R.K. Pandey, W.A. Stapleton, A.K. Bandyopadhyay, I. Sutanto, and A.A. Scantlin, Ceram. Trans. 240, 301 (2013).

    Google Scholar 

  3. R.K. Pandey, W.A. Stapleton, I. Sutanto, and A.A. Scantlin, US Patent Application Serial # 61/569379/International Application PCT/US2013/055503: Varistor–Transistor Hybrid Devices (pending).

  4. Y. Ishikawa and S.-I. Akimoto, J. Phys. Soc. Jpn. 12, 1083 (1957).

    Article  Google Scholar 

  5. Y. Ishikawa, J. Phys. Soc. Jpn. 13, 37 (1958).

    Article  Google Scholar 

  6. L. Navarrete, J. Dou, D.M. Allen, R. Schad, P. Padmini, P. Kale, and R.K. Pandey, J. Am. Ceram. Soc. 89, 1601 (2006).

    Article  Google Scholar 

  7. R.K. Pandey, W.A. Stapleton, P. Padmini, J. Dou, and R. Schad, AIP Adv. 2, 042166 (2012).

    Article  Google Scholar 

  8. F. Zhou, S. Kotru, and R.K. Pandey, Mater. Lett. 57, 2104 (2003).

    Article  Google Scholar 

  9. R.K. Pandey, P. Padmini, R. Schad, J. Dou, H. Stern, R. Wilkins, R. Dwivedi, W.J. Geerts, and C. O’Brien, J. Electroceram. 22, 334 (2009).

    Article  Google Scholar 

  10. J. Dou, L. Navarrete, P. Kale, P. Padmini, R.K. Pandey, H. Guo, A. Gupta, and R. Schad, J. Appl. Phys. 101, 053908 (2007).

    Article  Google Scholar 

  11. I.Z. Dai, H. Naranato, and K. Narazumi, J. Appl. Phys. 85, 7433 (1999).

    Article  Google Scholar 

  12. S.R. Surthi, S. Kotru, and R.K. Pandey, Mater. Lett. 57, 887 (2002).

    Article  Google Scholar 

  13. J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, and K. Fueki, J. Electrochem. Soc. 61, 3116 (1987).

    Google Scholar 

  14. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, and S. Lin, AIP Adv. 3, 062126 (2013).

    Article  Google Scholar 

  15. P. Padmini, S. Ardalan, F. Tompkins, P. Kale, R. Wilkins, and R.K. Pandey, J. Electron. Mater. 34, 1095 (2005).

    Article  Google Scholar 

  16. P. Padmini, M. Pulikkathara, R. Wilkins, and R.K. Pandey, Appl. Phys. Lett. 82, 586 (2003).

    Article  Google Scholar 

  17. D.M. Allen, L. Navarrete, J. Dou, R. Schad, P. Padmini, P. Kale, R.K. Pandey, S. Shojah-Ardalan, and R. Wilkins, Appl. Phys. Lett. 85, 5902 (2004).

    Article  Google Scholar 

  18. R. Einzinger, Annu. Rev. Mater. Sci. 17, 299 (1987).

    Article  Google Scholar 

  19. M.R. Cassia-Santos, V.S. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomes, E. Longo, E.R. Leite, and J.A. Varela, Mater. Chem. Phys. 90, 1 (2005).

    Article  Google Scholar 

  20. C.-W. Nahm, Trans. Electr. Electron. Mater. 10, 80 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of National Science Foundation (NSF) Grant # ECCS-1025395 (Texas State University) and NSF Grant # CBET-1126745 (Lamar University), the support of the Office of the Associate Vice President for Research at Texas State University, as well as of Lamar University Research Enhancement Grant # 420254. We also express our thanks to Dr. Wim Geerts and Dr. Anup K. Bandyopadhyay, both of the Department of Physics at Texas State University, for their support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, R.K., Stapleton, W.A., Sutanto, I. et al. Properties and Applications of Varistor–Transistor Hybrid Devices. J. Electron. Mater. 43, 1307–1316 (2014). https://doi.org/10.1007/s11664-014-3067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3067-8

Keywords

Navigation