Skip to main content
Log in

A Method for Quantification of the Effects of Size and Geometry on the Microstructure of Miniature Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Because the heterogeneity of microstructure has significant effects on the material properties of ultrafine interconnects, it should be quantified, to facilitate high-fidelity prediction of reliability. To address this challenge, a method based on autocorrelation and singular value decomposition is proposed for quantitative characterization of microstructure. The method was validated by developing a quantitative relationship between reported microstructure and tensile strength for SnAgCuRE solders reported in the literature. The method was used to study the effects of size and geometry in ultrafine Sn37Pb interconnects on microstructure and von Mises stress, which were obtained simultaneously by coupling a phase-field model with an elastic mechanical model. By use of this method the degree of heterogeneity of the microstructure in relation to preferred growth directions of the phases was quantified by use of a scalar microstructure index. It was found that microstructure heterogeneity increases with decreasing standoff height, and is higher for hourglass-shaped solder joints. The average von Mises stress was found to be positively related to the microstructure index. The strong correlation between microstructure index and average von Mises stress was confirmed by nonlinear regression analysis using an artificial neural network. This indicates that the mechanical behavior of ultrafine interconnects can be predicted more accurately on the basis of the microstructure index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kwon, H. Park, and C. Lee, Thin Solid Films 475, 58 (2005).

    Article  Google Scholar 

  2. K. Khoo, J. Onuki, T. Nagono, S. Tashiro, Y. Chonan, H. Akahoshi, T. Haba, T. Tobita, M. Chiba, and K. Ishikawa, Mater. Trans. 48, 2703 (2007).

    Article  Google Scholar 

  3. D. Josell, S.H. Brongersma, and Z. Tokei, Annu. Rev. Mater. Res. 39, 231 (2009).

    Article  Google Scholar 

  4. Z. Huang, P.P. Conway, E. Jung, R.C. Thomson, C. Liu, T. Loeher, and M. Minkus, J. Electron. Mater. 35, 1761 (2006).

    Article  Google Scholar 

  5. B.S.S.C. Rao, D.M. Fernandez, V. Kripesh, and K.Y. Zeng, 12th Electronics Packaging Technology Conference (Singapore, 2010), p. 423.

  6. C. Chen, L. Zhang, J. Zhao, L. Cao, and J.K. Shang, J. Electron. Mater. 41, 2487 (2012).

    Article  Google Scholar 

  7. X. Liu and G. Lu, IEEE Trans. Compon. Packag. Technol. 26, 455 (2003).

    Article  Google Scholar 

  8. R.S. Sidhu and N. Chawla, Metall. Mater. Trans. A 39A, 340 (2008).

    Article  Google Scholar 

  9. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A 39A, 349 (2008).

    Article  Google Scholar 

  10. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).

    Article  Google Scholar 

  11. M. Maleki, J. Cugnoni, and J. Botsis, Acta Mater. 61, 103 (2013).

    Article  Google Scholar 

  12. M. Gameiro, K. Mischaikow, and T. Wanner, Acta Mater. 53, 693 (2005).

    Article  Google Scholar 

  13. S. Torquato, Annu. Rev. Mater. Res. 32, 77 (2002).

    Article  Google Scholar 

  14. Y. Tian, T. Tan, Y. Wang, and Y. Fang, Pattern Recognit. 36, 649 (2003).

    Article  Google Scholar 

  15. W. Dreyer and W.H. Muller, Int. J. Solids Struct. 38, 1433 (2001).

    Article  Google Scholar 

  16. Thermo-Calc Software AB, Thermo-Calc Classic User’s Guide Version S, 1st ed. (Thermo-Calc Software AB, Stockholm, 2008), p. 1.

  17. U.R. Kattner and C.A. Handwerker, Z. Metallkd. 92, 740 (2001).

    Google Scholar 

  18. S.B. Kim and J. Yu, J. Electron. Mater. 39, 326 (2010).

    Article  Google Scholar 

  19. M.W. Woodmansee and R.W. Neu, Acta Mater. 54, 197 (2006).

    Article  Google Scholar 

  20. D.Q. Yu, J. Zhao, and L. Wang, J. Alloy Compd. 376, 170 (2004).

    Article  Google Scholar 

  21. http://www.inference.phy.cam.ac.uk/prlw1/minp/CourseC/CP1.pdf. Accessed 6 Aug. 2013.

  22. P.S. Lee, H.R. Piehler, A.D. Rollett, and B.L. Adams, Metall. Mater. Trans. A 33A, 3709 (2002).

    Article  Google Scholar 

  23. A. Tewari, A.M. Gokhale, J.E. Spowart, and D.B. Miracle, Acta Mater. 52, 307 (2004).

    Article  Google Scholar 

  24. D.T. Fullwood, S.R. Niezgoda, B.L. Adams, and S.R. Kalidindi, Prog. Mater. Sci. 55, 477 (2010).

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, Stat. Anal. Data Min. 1, 296 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the National Natural Science Foundation of China (NSFC) under grant no. 51004118, the Pearl River New Science Star Program of Guangzhou under grant no. 2012J2200074, the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (SYSU internal grant no. 30000-4105346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, H., Huang, Z. & Conway, P. A Method for Quantification of the Effects of Size and Geometry on the Microstructure of Miniature Interconnects. J. Electron. Mater. 43, 618–629 (2014). https://doi.org/10.1007/s11664-013-2907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2907-2

Key words

Navigation