Skip to main content
Log in

Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent developments on decreasing the operating temperature for solid oxide fuel cells (SOFCs) have enabled the use of high-temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high-temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced after stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence, the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this article, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Fergus: Mater. Sci. Eng. A, 2005, vol. 397, nos. 1–2, pp. 271-83.

    Google Scholar 

  2. Z. Yang, G. Xia, and J.W. Stevenson: Electrochem. Solid-State Lett., 2005, vol. 8, no. 3, pp. 168-70.

    Article  Google Scholar 

  3. Z. Yang, J.S. Hardy, M.S. Walker, G. Xia, S.P. Simner, and J.W. Stevenson: J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. A1825-31.

    Article  Google Scholar 

  4. S. Chevalier, C. Valot, G. Bonnet, J.C. Colson, and J.P. Larpin: Mater. Sci. Eng. A, 2003, vol. A343, nos. 1–2, pp. 257-64.

    CAS  Google Scholar 

  5. P. Kofstad: Proc. 2 nd Euro. Solid Oxide Fuel Cell Forum, vol. 2, Oslo, Norway, 1996, pp. 479–90.

  6. A. Bautista, F. Velasco, and J. Abenojar: Corros. Sci., 2003, vol. 45, no. 6, pp. 1343-54.

    Article  CAS  Google Scholar 

  7. W. Qu, J. Li, and D.G. Ivey: J. Power Sources, 2004, vol. 138, nos. 1–2, pp. 162-73.

    Article  CAS  Google Scholar 

  8. I.M. Wolff, L.E. Iorio, T. Rumpf, P.V.T. Scheers, and J.H. Potgieter: Mater. Sci. Eng. A, 1998, vol. A241, nos. 1–2, pp. 264-76.

    CAS  Google Scholar 

  9. A. Martinez-Villafane, J.G. Chacon-Nava, C. Gaona-Tiburcio, F. Almeraya-Calderon, G. Dominguez-Patino, and J.G. Gonzalez-Rodriguez: Mater. Sci. Eng. A, 2003, vol. A363, nos. 1–2, pp. 15-19.

    CAS  Google Scholar 

  10. J.E. Hammer, S.J. Laney, R.W. Jackson, K. Coyne, F.S. Pettit, and G.H. Meier: Oxid. Met., 2007, vol. 67, nos. 1–2, pp. 1-38.

    Article  CAS  Google Scholar 

  11. F.J. Perez, M.J. Cristobal, M.P. Hierro, F. Pedraza, G. Arnau, and T.P. Merino, Surf. Coat. Technol., 2000, vol. 126, nos. 2–3, pp. 116-22.

    Article  CAS  Google Scholar 

  12. X. Yu and Y. Sun: Mater. Sci. Eng. A, 2003, vol. 363, nos. 1–2, pp. 30-39.

    Google Scholar 

  13. A. Holt and P. Kofstad: Solid State Ionics, 1999, vol. 117, nos. 1–2, pp. 21-25.

    Article  CAS  Google Scholar 

  14. X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, and L.C. De Jonghe: Solid State Ionics, 2005, vol. 176, nos. 5-6, pp. 425-33.

    Article  CAS  Google Scholar 

  15. Z.G. Yang, G.G. Xia, X.H. Li, and J.W. Stevenson: Int. J. Hydrog. Energy, 2007, vol. 32, no. 16, pp. 3648-54.

    Article  CAS  Google Scholar 

  16. M.J. Garcia-Vargas, M. Zahid, F. Tietz, and A. Aslanides: ECS Trans., 2007, vol. 7 (1), part 2, pp. 2399–2405.

  17. D.G. Ivey, W. Qu, J. Li, and J.M. Hill: J. Power Sources, 2006, vol. 153, no. 1, pp. 114-24.

    Article  Google Scholar 

  18. M. Bertoldi, T. Zandonella, D. Montinaro, V.M. Sglavo, A. Fossati, A. Lavacchi, C. Giolli, and U. Bardi: J. Fuel Cell Sci. Technol., 2008, vol. 5 (1), pp. 011001-1-5.

  19. M. Schulte and M. Schutze: Oxid. Met., 1999, vol. 51, nos. 1–2, pp. 55-77.

    Article  CAS  Google Scholar 

  20. S.R. Pillai, N.S. Barasi, H.S. Khatak, and J.B. Gnanamoorthy: Oxid. Met., 1998, vol. 49, nos. 5–6, pp. 509-30.

    Article  CAS  Google Scholar 

  21. V.K. Tolpygo, J.R. Dryden, and D.R. Clarke: Acta Mater., 1998, vol. 46, no. 3, pp. 927-37.

    Article  CAS  Google Scholar 

  22. W. Przybilla and M. Schutze: Oxid. Met., 2002, vol. 58, nos. 3–4, pp. 337-59.

    Article  CAS  Google Scholar 

  23. J. Mougin, A. Galerie, M. Dupeux, N. Rosman, G. Lucazeau, A.M. Huntz, and L. Antoni: Mater. Corros., 2002, vol. 53, no. 7, pp. 486-90.

    Article  CAS  Google Scholar 

  24. X. Sun, W.N. Liu, P. Singh, and M.A. Khaleel: Technical Report PNNL-15794, Pacific Northwest National Laboratory, Richland, WA, 2007.

    Google Scholar 

  25. Y.M. Xu and H.M. Wang: J. Alloy. Compd., 2008, vol. 457, nos. 1–2, pp. 239-43.

    Article  CAS  Google Scholar 

  26. P.Y. Hou, A.P. Paulikas, B.W. Veal, and J.L. Smialek: Acta Mater., 2007, vol. 55, no. 16, pp. 5601-13.

    Article  CAS  Google Scholar 

  27. J.Y. Kim, V.L. Sprenkle, N.L. Canfield, K.D. Meinhardt, and L.A. Chick: J. Electrochem. Soc., 2006, vol. 153, no. 5, pp. A880-86.

    Article  Google Scholar 

  28. X. Sun, W.N. Liu, E. Stephens, and M.A. Khaleel: J. Power Sources, 2008, vol. 176, no. 1, pp. 167-74.

    Article  CAS  Google Scholar 

  29. ABAQUS, Inc.: ABAQUS/Standard User’s Manual, Hibbitt, Karlsson and Sorensen Inc., Pawtucket, RI, 2002.

  30. A.M. Huntz: Mater. Sci. Eng. A, 1995, vol. A201, pp. 211-28.

    CAS  Google Scholar 

  31. J.J. Barnes, J.G. Goedjen, and D.A. Shores: Oxidat. Met., 1989, vol. 32, nos. 5/6, pp. 449-69.

    Article  CAS  Google Scholar 

  32. Product Data Bulletin, 441 Stainless Steel, UNS S44100 Preliminary Bulletin, AK Steel, AK Steel Corporation, West Chester, OH, 2007. http://www.aksteel.com/pdf/markets_products/Stainless/ferritic/441_Data_Bulletin.pdf.

  33. Technical Data Blue Sheet, Stainless Steel AL 441HP Alloy, ATI Allegheny Ludlum, Brackenridge, PA, 2005. http://www.alleghenyludlum.com/ludlum/documents/441.pdf.

  34. W.N. Liu, X. Sun. E.V. Stephens, and M.A. Khaleel: J. Power Sources, 2009, vol. 189, no. 2, pp. 1044-50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RL01830. This work was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenning Liu.

Additional information

Manuscript submitted July 20, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Sun, X., Stephens, E. et al. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate. Metall Mater Trans A 42, 1222–1228 (2011). https://doi.org/10.1007/s11661-010-0537-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0537-3

Keywords

Navigation