Skip to main content
Log in

Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

We previously introduced the bar gene, along with chitinase and AP24 genes, into the pineapple genome. The present report focuses on the evaluation of the first vegetative generation of a transgenic clone containing these genes. Three materials were compared: macropropagated controls (non-transformed), micropropagated controls (non-transformed), and micropropagated transformed plants. From each group, 50% of the plants were sprayed with FINALE® 3 mo after the experiment initiation. The characterization was performed after 1 yr of field growth. FINALE® killed all non-transgenic plants. Plants that survived the herbicide application showed 2n = 50 chromosomes in their roots after 1 yr in the field. Micropropagated transformed plants sprayed with FINALE® did not show phenotype differences from micropropagated transformed plants not sprayed with the herbicide. Between the micropropagated transformed plants sprayed with FINALE® and the micropropagated control plants, the following differences were observed: modifications in levels of cell wall-linked, free and total phenolics, and total proteins. Moreover, changes of the fruit mass without crown were also recorded. Between the micropropagated transformed plants sprayed with FINALE® and the macropropagated control plants, levels of chlorophyll b, total chlorophyll pigments, and proteins were different. Furthermore, activities of phenylalanine ammonia-lyase, superoxide dismutase, and glutamine synthetase were dissimilar. The plant height and diameter, and the crown height were also different. Until now, we have evaluated transformed pineapple plants during hardening and field growth. Although some unexpected variations were recorded, we believe they are not relevant enough to justify rejection of transgenesis as an important tool for pineapple genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Accotto G. P.; Nervo G.; Acciarri N.; Tavella L.; Vecchiati M.; Schiavi M.; Mason G.; Vaira A. Field evaluation of tomato hybrids engineered with tomato spotted wilt virus sequences for virus resistance, agronomic performance, and pollen-mediated transgene flow. Phytopathology 95: 800–807; 2005.

    Article  PubMed  Google Scholar 

  • Al-Kaff N. S.; Kreike M. M.; Covey S. N.; Pitcher R.; Page A. M.; Dale P. J. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nat Biotech. 18: 995–999; 2000.

    Article  CAS  Google Scholar 

  • Bayer. Technical information. In: Bayer (ed) Glufosinate-Ammonium. Bayer CropScience. Monheim, Germany, 38; 2005.

  • Betz F. S.; Hammond B. G.; Fuchs R. L. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Reg Toxicol Pharmacol. 32: 156–173; 2000.

    Article  CAS  Google Scholar 

  • Blanco C.; Carrillo T.; Castillo R.; Quiralte J.; Cuevas M. Latex allergy: clinical features and cross-reactivity with fruits. Ann Allergy 73: 309–314; 1994.

    CAS  PubMed  Google Scholar 

  • Bor Y.; Silva P.; Francisco R. Chromosomal number of Bromeliaceae plants. Rev. Bras. Frut. 9: 49–55; 1987.

    Google Scholar 

  • Botella J. R.; Fairbairn D. J. Present and future potential of pineapple biotechnology. Acta Hort. 622: 23–28; 2005.

    Google Scholar 

  • Brehler R.; Thiessen U.; Mohr C.; Luger T. "Latex-fruit syndrome": frequency of cross-reacting IgE antibodies. Allergy 52: 404–410; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Broglie K. E.; Gaynor J. J.; Broglie R. M. Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci U S A 83: 6820–6824; 1986.

    Article  CAS  PubMed  Google Scholar 

  • Carmona E. R.; Arencibia A. D.; López J.; Simpson J.; Vargas D.; Sala F. Analysis of genomic variability in transgenic sugarcane plants produced by Agrobacterium tumefaciens infection. Plant Breed 124: 33–38; 2005.

    Article  CAS  Google Scholar 

  • Castle L.; Errampalli D.; Atherton L.; Franzmann E. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241: 504–514; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri M.; Belenghi B.; Balestrazzi A. Transformation of elite white poplar (Populus alba L.) cv. “Villafranca” and evaluation of herbicide resistance. Plant Cell Rep. 19: 978–982; 2000.

    Article  CAS  Google Scholar 

  • Christensen A. H.; Sharrock R. A.; Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 18: 675–689; 1992.

    Article  CAS  PubMed  Google Scholar 

  • D´Halluin K.; De Block M.; Denecke J.; Janssens J.; Leemans J.; Reynaerts A.; Botterman J. The bar gene as selectable and screenable marker in plant genetic engineering. Meth Enzymol 216: 415–426; 1992.

    Article  Google Scholar 

  • De Greef W.; Delon R.; De Block M.; Leemans J.; Botterman J. Evaluation of herbicide resistance in transgenic crops under field conditions. BioTechnology 7: 61–64; 1989.

    Article  Google Scholar 

  • Enriquez-Obregón G. A.; Vázquez-Padrón R. I.; Prieto-Samsonov D. L.; De la Riva G. A.; Selman-Housein G. Herbicide-resistance sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206: 20–27; 1998.

    Article  Google Scholar 

  • Espinosa P.; Lorenzo J. C.; Iglesias A.; Yabor L.; Menéndez E.; Borroto Y.; Hernández L.; Arencibia A. Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep. 21: 136–140; 2002.

    Article  CAS  Google Scholar 

  • FAOSTAT (2008) FAO STATISTIC DIVISION. Available http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed 23 May 2008.

  • Franck A.; Guilley H.; Jonard G.; Richards K.; Hirth L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21: 285–294; 1980.

    Article  CAS  PubMed  Google Scholar 

  • Gore J.; Adamczyk J. J.; Catchot A.; Jackson R. Yield response of dual-toxin Bt cotton to Helicoverpa zea infestations. J Econ Entomol. 101: 1594–1599; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Gurr, S. I.; McPherson, J.; Bowles, D. J. Lignin and associated phenolic acids in cell walls. In: Wilkinson D. L. (ed) Molecular Plant Pathology. Oxford, pp. 51–56; 1992

  • Habash D.; Massiah J.; Rong H.; Wallsgrove R.; Leigh R. The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol. 138: 83–89; 2001.

    Article  CAS  Google Scholar 

  • Hagerty A. M.; Kilpatrick A. L.; Turnipseed S. G.; Sullivan M. J.; Bridges W. C. Predaceous arthropods and lepidopteran pests on conventional, bollgard, and bollgard II cotton under untreated and disrupted conditions. Environ Entomol. 34: 105–114; 2005.

    Article  Google Scholar 

  • Hammerschmidt R.; Nuckleus E. M.; Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol. 20: 61–71; 1982.

    Article  CAS  Google Scholar 

  • Heath R. L.; Packer J. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125: 189–198; 1968.

    Article  CAS  PubMed  Google Scholar 

  • Herouet C.; Esdaile D. J.; Mallyon B. A.; Debruyne E.; Schulz A.; Curtier T.; Hendricx K.; Klis Var der R. J.; Rovan D. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Reg Toxicol Pharmacol. 41: 134–149; 2005.

    Article  CAS  Google Scholar 

  • Jorrin J.; Dixon R. A. Stress responses in alfalfa (Medicago sativa L.). II. Purification, characterization, and induction of phenylalanine ammonia-lyase isoforms from elicitor-treated cell suspension cultures. Plant Physiol. 92: 447–455; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S. Non-host resistance to Phytophthora: novel prospects for a classical problem. Plant Biol. 4: 295–300; 2001.

    CAS  Google Scholar 

  • Kuiper H. A.; Kleter G. A.; Noteborn H. P.; Kok J. Assessment of the food safety issues related to genetically modified foods. Plant J. 27: 503–528; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo J. C.; Ojeda E.; Espinosa A.; Borroto C. Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell Dev Biol-Plant 37: 803–806; 2001.

    Article  Google Scholar 

  • Martínez M.; Ojeda E.; Espinosa A.; Sánchez M.; Castillo R.; González M. T.; Engelmann F.; Lorenzo J. C. Field performance of sugarcane plants derived from cryopreserved calluses. Cryoletters 23: 21–26; 2002.

    Google Scholar 

  • McCord J.; Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein. J Inorg Biochem. 244: 6049–6055; 1969.

    CAS  Google Scholar 

  • Meihls L. N.; Higdon M. L.; Siegfried B. D.; Miller N. J.; Sappington T. W.; Ellersieck M. R.; Spencer T. A.; Hibbard B. E. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. Proc Natl Acad Sci U S A 49: 19177–19182; 2008.

    Article  Google Scholar 

  • Mohapatra U.; McCab M.; Power J.; Schepers F.; Van den Arend A.; Davey M. R. Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transg Res. 8: 33–44; 1999.

    Article  CAS  Google Scholar 

  • Momma K.; Hashimoto W.; Ozawa S.; Kawai S.; Katsube T.; Takaiwa F.; Kito M.; Utsumi S.; Murata K. Quality and safety evaluation of genetically engineered rice with soybean glycinin: analyses of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem. 63: 314–318; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Ohba T. Y.; Machida C.; Machida Y. DNA rearragements associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J. 7: 157–164; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Pérez G.; Yanes E.; Isidrón M.; Orenzo J. C. Phenotypic and AFLP characterization of two new pineapple somaclones derived from in vitro culture. Plant Cell Tiss Org Cult. 96: 113–116; 2009.

    Article  Google Scholar 

  • Porras, R. J. Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic and marine organisms including recalcitrant algae. In: Scheer H (ed) Chemistry of Chorophyll, Boca Raton: 320; 1991

  • Quemada H.; Strehlow L.; Decker-Walters D.; Staub J. Population size and incidence of virus infection in free-living populations of Cucurbita pepo. Environ Biosafety Res. 7: 185–196; 2008.

    Article  PubMed  Google Scholar 

  • Sanchez-Monge R.; Blanco C.; Díaz-Perales A.; Collada C. Carrillo T.; Aragoncillo C.; Salcedo G. Class I chitinases, the panallergens responsible for the latex-fruit syndrome, are induced by ethylene treatment and inactivated by heating. J Allergy Clin Immunol. 106: 190–195; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Schlumbaum A.; Match F.; Vogeli U.; Boller T. Plant chitinases differ in antifungal activity. Nature 324: 325–367; 1986.

    Article  Google Scholar 

  • Singh N. K.; Nelson D. E.; Kuhn D.; Hasegawa P. M.; Bressant R. A. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol. 90: 1096–1101; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Sripaoraya S.; Blackhall N.; Marchant R.; Power J.; Lowe K. Relationships in pineapple by random amplified polymorphic DNA (RAPD) analysis. Plant Breed 120: 265–267; 2001.

    Article  CAS  Google Scholar 

  • Sripaoraya S.; Keawsompong S.; Insupa P.; Power J. B.; Davey M. R.; Srinives P. Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125: 411–413; 2006.

    Article  CAS  Google Scholar 

  • Takano M.; Egawa H.; Ikeda E.; Wakasa K. The structures of integration sites in transgenic rice. Plant J. 11: 353–361; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Thompson C. J.; Movva N. R.; Tizard R.; Crameri R.; Davies J. E.; Lauwereys M.; Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces higroscopicus. EMBO J 6: 2523–2527; 1987.

    Google Scholar 

  • Torres A. C.; Nagata R. T.; Ferl R. J.; Bewick T. A.; Cantliffe D. J. In vitro assay selection of glyphosate resistance in lettuce. J Am Soc Hort Sci. 1: 86–89; 1999.

    Google Scholar 

  • Ventura J.; Zambolim L.; Chaves G. Tissue culture technique for rapid clonal propagation of pineapple cultivars. Acta Hort. 425: 161–166; 1996.

    Google Scholar 

  • Vigne E.; Komar V.; Fuchs M. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of grapevine fanleaf virus. Transg Res. 13: 165–179; 2004.

    Article  CAS  Google Scholar 

  • Wehrmann A.; Van Vliet A.; Opsomer C.; Bottermann J.; Schulz A. The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14: 1274–1278; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Wilson A. K.; Latham J. R. Transformation-induced mutations in transgenic plants: analysis and biosafety implications. Biotechnol Genet Eng Rev. 23: 209–234; 2006.

    CAS  Google Scholar 

  • Woloshuk C. P.; Meulenhoff J. S.; Sela-Buurlage M.; Van den Elzen P. J. M.; Cornelissen B. J. C. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. The Plant Cell 3: 619–628; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Yabor L.; Aragón C.; Hernández M.; Arencibia A. D.; Lorenzo J. C. Biochemical side effects of the herbicide FINALE on bar gene-containing transgenic pineapple plantlets. Euphytica 164: 515–520; 2008.

    Article  CAS  Google Scholar 

  • Yabor L.; Arzola M.; Aragón C.; Hernández M.; Arencibia A.; Lorenzo J. C. Biochemical side effects of genetic transformation of pineapple. Plant Cell Tiss Org Cult. 86: 63–67; 2006.

    Article  CAS  Google Scholar 

  • Yanes P. E.; González O. J.; Sánchez R. R. A technology of acclimatization of pineapple vitroplants. Pineap News 7: 24; 2000.

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Cuban Ministry of Science, Technology, and the Environment through a grant to Mrs. Lourdes Yabor Cabrera. The authors are grateful to Dr. Lazaro Hernandez (CIGB, Havana, Cuba) for providing gene constructs; to Mrs. Glyn Jabbour for her critical reading of the manuscript; and to Mrs. Mayda Arzola, Mrs. Julia Martínez, Mrs. Alitza Iglesias, and Mr. Abel González for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Yabor.

Additional information

Editor: W. C. Otoni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabor, L., Valle, B., Carvajal, C. et al. Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar . In Vitro Cell.Dev.Biol.-Plant 46, 1–7 (2010). https://doi.org/10.1007/s11627-009-9245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9245-3

Keywords

Navigation