Skip to main content

Advertisement

Log in

Characterization of three newly established rat sarcoma cell clones

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Establishment of new animal models using selected cell lines with different behaviour is very important for cancer investigations. In this study, we describe three morphologically distinct rat sarcoma clones—C4, C7 and D6—isolated from the R5-28 cell line. Cells of all clones expressed vimentin, fibronectin, laminin, collagen IV and matrix metalloproteinases 2 and 9. However, desmin, cytokeratins 8 and 18, ZO-1 and desmoplakins I and II were not detected. Significant proliferative capacity was documented by proliferating cell nuclear antigen expression and BrdU positivity. Karyotype of the C4, C7 and D6 cells greatly differed from diploid chromosome number of normal rat somatic cells. High expression of three cytokines—monocyte chemoattractant protein 1, tissue inhibitor of metalloproteinases 1 and vascular endothelial growth factor—was observed in all three clones. However, they varied in concentration of chemokines associated with neutrophil migration and activation—cytokine induced neutrophil chemoattractant 2 and lipopolysaccharide induced CXC chemokine. The C4 clone showed spontaneous tumour regression in vivo that was associated with significant changes in lymphocyte subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Akahane T.; Akahane M.; Shah A.; Connor C. M.; Thorgeirsson U. P. TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp Cell Res 301: 158–167; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Balamayooran G.; Batra S.; Balamayooran T.; Cai S.; Jeyaseelan S. Monocyte chemoattractant protein 1 regulates pulmonary host defense via neutrophil recruitment during Escherichia coli infection. Infect Immun 79: 2567–2577; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Barnetson R. S.; Halliday G. M. Regression in skin tumours: a common phenomenon. Australas J Dermatol 38(Suppl.1): S63–S65; 1997.

    PubMed  Google Scholar 

  • Carr M. W.; Roth S. J.; Luther E.; Rose S. S.; Springer T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91: 3652–3656; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Choong M. L.; Yong Y. P.; Tan A. C.; Luo B.; Lodish H. F. LIX: a chemokine with a role in hematopoietic stem cells maintenance. Cytokine 25: 239–245; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Connolly D. C. Animal models of ovarian cancer. Cancer Treat Res 149: 353–391; 2009.

    Article  PubMed  CAS  Google Scholar 

  • DeClerck Y. A.; Mercurio A. M.; Stack M. S.; Chapman H. A.; Zutter M. M.; Muschel R. J.; Raz A.; Matrisian L. M.; Sloane B. F.; Noel A.; Hendrix M. J.; Coussens L.; Padarathsingh M. Proteases, extracellular matrix, and cancer: a workshop of the path B study section. Am J Pathol 164: 1131–1139; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Dodd R. D.; Mito J. K.; Kirsch D. G. Animal models of soft-tissue sarcoma. Dis Model Mech 3: 557–566; 2010. doi:10.1242/dmm.005223.

    Article  PubMed  CAS  Google Scholar 

  • Euhus D. M.; Hudd C.; LaRegina M. C.; Johnson F. E. Tumor measurement in the nude mouse. J Surg Oncol 31: 229–234; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N.; Gerber H. P.; LeCouter J. The biology of VEGF and its receptors. Nat Med 9: 669–676; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Freshney R. I. Culture of animal cells: a manual of basic technique. 5th ed. Wiley-Liss, Hoboken; 2005.

    Book  Google Scholar 

  • Halliday G. M.; Patel A.; Hunt M. J.; Tefany F. J.; Barnetson R. S. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg 19: 352–358; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Horák V.; Fléchon J. E. Immunocytochemical characterisation of rabbit and mouse embryonic fibroblasts. Reprod Nutr Dev 38: 683–695; 1998.

    Article  PubMed  Google Scholar 

  • Ikenaka Y.; Yoshiji H.; Kuriyama S.; Yoshii J.; Noguchi R.; Tsujinoue H.; Yanase K.; Namisaki T.; Imazu H.; Masaki T.; Fukui H. Tissue inhibitor of metalloproteinase-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer 105: 340–346; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T.; Yoneda K.; Manabe M.; Demitsu T. Spontaneous regression of Merkel cell carcinoma: a comparative study of TUNEL index and tumor-infiltrating lymphocytes between spontaneous regression and non-regression group. J Dermatol Sci 24: 203–211; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Jaganjac M.; Poljak-Blazi M.; Zarkovic K.; Schaur R. J.; Zarkovic N. The involvement of granulocytes in spontaneous regression of Walker 256 carcinoma. Cancer Lett 260: 180–186; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Jain S.; Xu R.; Prieto V. G.; Lee P. Molecular classification of soft tissue sarcomas and its clinical applications. Int J Clin Exp Pathol 3: 416–428; 2010.

    PubMed  CAS  Google Scholar 

  • Kalialis L. V.; Drzewiecki K. T.; Klyver H. Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 19: 275–282; 2009.

    Article  PubMed  Google Scholar 

  • Kappler M.; Bache M.; Bartel F.; Kotzsch M.; Panian M.; Würl P.; Blümke K.; Schmidt H.; Meye A.; Taubert H. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 11: 186–193; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ladanyi M.; Bridge J. A. Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol 31: 532–538; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lazar A.; Abruzzo L. V.; Pollock R. E.; Lee S.; Czerniak B. Molecular diagnosis of sarcomas: chromosomal translocations in sarcomas. Arch Pathol Lab Med 130: 1199–1207; 2006.

    PubMed  CAS  Google Scholar 

  • Leader M.; Collins M.; Patel J.; Henry K. Vimentin: an evaluation of its role as a tumour marker. Histopathology 11: 63–72; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mackall C. L.; Meltzer P. S.; Helman L. J. Focus on sarcomas. Cancer Cell 2: 175–178; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A. The ying-yang of tumor-associated neutrophils. Cancer Cell 16: 173–174; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Maquoi E.; Frankenne F.; Noël A.; Krell H. W.; Grams F.; Foidart J. M. Type IV collagen induces matrix metalloproteinase 2 activation in HT1080 fibrosarcoma cells. Exp Cell Res 261: 348–359; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Misra A.; Mistry N.; Grimer R.; Peart F. The management of soft tissue sarcoma. J Plast Reconstr Aesthet Surg 62: 161–174; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Morávková A.; Málek O.; Pokorná E.; Strnádel J.; Hradecký J.; Horák V. Immune characterization of the Lewis rats inoculated with K2 sarcoma cell line and newly derived R5-28 malignant cells. Folia Biol (Praha) 51: 159–165; 2005.

    Google Scholar 

  • Ohnstad H. O.; Paulsen E. B.; Noordhuis P.; Berg M.; Lothe R. A.; Vassilev L. T.; Myklebost O. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines. BMC Cancer 11(211): 1–11; 2011. doi:10.1186/1471-2407-11-211.

    PubMed  Google Scholar 

  • Ottaviano L.; Schaefer K. L.; Gajewski M.; Huckenbeck W.; Baldus S.; Rogel U.; Mackintosh C.; de Alava E.; Myklebost O.; Kresse S. H.; Meza-Zepeda L. A.; Serra M.; Cleton-Jansen A. M.; Hogendoorn P. C.; Buerger H.; Aigner T.; Gabbert H. E.; Poremba C. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 49: 40–51; 2010.

    Google Scholar 

  • Pattarroyo M.; Tryggvason K.; Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12: 197–207; 2002.

    Article  Google Scholar 

  • Penichet M. L.; Dela Cruz J. S.; Challita-Eid P. M.; Rosenblatt J. D.; Morrison S. L. A murine B cell lymphoma expressing human HER2/neu undergoes spontaneous tumor regression and elicits antitumor immunity. Cancer Immunol Immunother 49: 649–662; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Piantino C. B.; Sousa-Canavez J. M.; Srougi V.; Salvadori F.; Kato R.; Ayres P. P.; Srougi M.; Camara-Lopes L. H.; Gattás G. J.; Fridman C.; de Toledo F.; Santana I.; Leite K. R. Establishment and characterization of human bladder cancer cell lines BexBra1, BexBra2, and BexBra4. In Vitro Cell Dev Biol Anim 46: 131–139; 2010.

    Article  PubMed  Google Scholar 

  • Pokorná E.; Zicha D.; Chaloupková A.; Matoušková E.; Veselý P. Two dynamic morphotypes of sarcoma cells, asymmetric stellate and triangle with leading lamela, are related to malignancy. Folia Biol (Praha) 49: 33–39; 2003.

    Google Scholar 

  • Sabeh F.; Shimizu-Hirota R.; Weiss S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185: 11–19; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Shor A. C.; Keschman E. A.; Lee F. Y.; Muro-Cacho C.; Letson G. D.; Trent J. C.; Pledger W. J.; Jove R. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 67: 2800–2808; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Smith J. B.; Herschman H. R. Glucocorticoid-attenuated response genes encode intercellular mediators, including a new C-X-C chemokine. J Biol Chem 270: 16756–16765; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastases. Semin Cancer Biol 10: 415–433; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Strieter R. M.; Wiggins R.; Phan S. H.; Wharram B. L.; Showell H. J.; Remick D. G.; Chensue S. W.; Kunkel S. L. Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem Biophys Res Commun 162: 694–700; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Strnádel J.; Kverka M.; Horák V.; Vannucci L.; Usvald D.; Hlučilová J.; Plánská D.; Vána P.; Reisnerová H.; Jílek F. Multiplex analysis of cytokines in rat sarcoma model. Folia Biol (Praha) 53: 216–219; 2007.

    Google Scholar 

  • Taketo M. M. Mouse models of gastrointestinal tumors. Cancer Sci 97: 355–361; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tammela T.; Enholm B.; Alitalo K.; Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res 65: 550–563; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tanjore H.; Kalluri R. The role of type IV collagen and basement membranes in cancer progression and metastasis. Am J Pathol 168: 715–717; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Thomas J. A.; Badini M. The role of innate immunity in spontaneous regression of cancer. Indian J Cancer 48: 246–251; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu K.; Takahara T.; Seki N.; Seto T.; Ota S.; Nakamura M.; Eguchi K. Spontaneous regression of a primary sarcoma of the pulmonary artery. Respirat Med Extra 3: 6–8; 2007.

    Article  Google Scholar 

  • Vesely M. J.; Murray D. J.; Neligan P. C.; Novak C. B.; Gullane P. J.; Ghazarian D. Complete spontaneous regression in Merkel cell carcinoma. J Plast Reconstr Aesthet Surg 61: 165–171; 2008.

    Article  PubMed  Google Scholar 

  • Watanabe K.; Koizumi F.; Kurashige Y.; Tsurufuji S.; Nakagawa H. Rat CINC, a member of the interleukin-8 family, is a neutrophil-specific chemoattractant in vivo. Exp Mol Pathol 55: 30–37; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Wibmer C.; Leithner A.; Zielonke N.; Sperl M.; Windhager R. Increasing incidence rates of soft tissue sarcomas? A population-based epidemiologic study and literature review. Ann Oncol 21: 1106–1111; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yoo J. K.; Kwon H.; Khil L. Y.; Zhang L.; Jun H. S.; Yoon J. W. IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol 175: 8280–8286; 2005.

    PubMed  CAS  Google Scholar 

  • Zachriae C. O.; Anderson A. O.; Thompson H. L.; Appella E.; Mantovani A.; Oppenheim J. J.; Matsushima K. Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J Exp Med 171: 2177–2182; 1990.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MEYS CR (grant no.2B08063) and by the IAPG AS CR, v.v.i. (RVO: 67985904). We thank Jaroslava Sestakova and Jitka Klucinova for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Holubova.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holubova, M., Leba, M., Sedmikova, M. et al. Characterization of three newly established rat sarcoma cell clones. In Vitro Cell.Dev.Biol.-Animal 48, 610–618 (2012). https://doi.org/10.1007/s11626-012-9563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9563-3

Keywords

Navigation