Skip to main content

Advertisement

Log in

Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice

  • Original Article
  • Published:
Tumor Biology

Abstract

The three most frequent pediatric sarcomas, i.e., Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma, were examined in this study: three cell lines derived from three primary tumor samples were analyzed from each of these tumor types. Detailed comparative analysis of the expression of three putative cancer stem cell markers related to sarcomas—ABCG2, CD133, and nestin—was performed on both primary tumor tissues and corresponding cell lines. The obtained results showed that the frequency of ABCG2-positive and CD133-positive cells was predominantly increased in the respective cell lines but that the high levels of nestin expression were reduced in both osteosarcomas and rhabdomyosarcomas under in vitro conditions. These findings suggest the selection advantage of cells expressing ABCG2 or CD133, but the functional tests in NOD/SCID gamma mice did not confirm the tumorigenic potential of cells harboring this phenotype. Subsequent analysis of the expression of common stem cell markers revealed an evident relationship between the expression of the transcription factor Sox2 and the tumorigenicity of the cell lines in immunodeficient mice: the Sox2 levels were highest in the two cell lines that were demonstrated as tumorigenic. Furthermore, Sox2-positive cells were found in the respective primary tumors and all xenograft tumors showed apparent accumulation of these cells. All of these findings support our conclusion that regardless of the expression of ABCG2, CD133 and nestin, only cells displaying increased Sox2 expression are directly involved in tumor initiation and growth; therefore, these cells fit the definition of the cancer stem cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lasky 3rd JL, Choe M, Nakano I. Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther. 2009;4:298–305.

    Article  CAS  PubMed  Google Scholar 

  2. Friedman GK, Gillespie GY. Cancer stem cells and pediatric solid tumors. Cancers (Basel). 2011;3:298–318.

    Article  CAS  Google Scholar 

  3. Manoranjan B, Venugopal C, McFarlane N, Doble BW, Dunn SE, Scheinemann K, et al. Medulloblastoma stem cells: modeling tumor heterogeneity. Cancer Lett. 2013;338:23–31.

    Article  CAS  PubMed  Google Scholar 

  4. Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol. 2011;32:425–40.

    Article  PubMed  Google Scholar 

  5. Friedman GK, Cassady KA, Beierle EA, Markert JM, Gillespie GY. Targeting pediatric cancer stem cells with oncolytic virotherapy. Pediatr Res. 2012;71:500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Veselska R, Skoda J, Neradil J. Detection of cancer stem cell markers in sarcomas. Klin Onkol. 2012;25:2S16–20.

    PubMed  Google Scholar 

  7. Dela Cruz FS. Cancer stem cells in pediatric sarcomas. Front Oncol. 2013;3:168.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Satheesha S, Schafer BW. Cancer stem cells in pediatric sarcomas. In: Hayat MA, editor. Stem cells and cancer stem cells. Dordrecht: Springer; 2014. p. 111–26.

    Google Scholar 

  9. Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang M, Zhu H, Feng J, Ni S, Huang J. High CD133 expression in the nucleus and cytoplasm predicts poor prognosis in non-small cell lung cancer. Dis Markers. 2015;2015:986095.

    PubMed  PubMed Central  Google Scholar 

  11. Nunukova A, Neradil J, Skoda J, Jaros J, Hampl A, Sterba J, et al. Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines. Int J Mol Med. 2015;36:65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Veselska R, Hermanova M, Loja T, Chlapek P, Zambo I, Vesely K, et al. Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer. 2008;8:300.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sana J, Zambo I, Skoda J, Neradil J, Chlapek P, Hermanova M, et al. CD133 expression and identification of CD133/nestin positive cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. Anal Cell Pathol. 2011;34:303–18.

    Article  CAS  Google Scholar 

  14. Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, et al. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mikulenkova E, Neradil J, Zitterbart K, Sterba J, Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumour Biol. 2015;36:7483–91.

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  17. Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, et al. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One. 2012;7, e41401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martins-Neves SR, Lopes AO, do Carmo A, Paiva AA, Simões PC, Abrunhosa AJ, et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. 2012;12:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Fiore R, Santulli A, Ferrante RD, Giuliano M, De Blasio A, Messina C, et al. Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol. 2009;219:301–13.

    Article  PubMed  Google Scholar 

  20. Yang M, Zhang R, Yan M, Ye Z, Liang W, Luo Z. Detection and characterization of side population in Ewing’s sarcoma SK-ES-1 cells in vitro. Biochem Biophys Res Commun. 2010;391:1062–6.

    Article  CAS  PubMed  Google Scholar 

  21. Pituch-Noworolska A, Zaremba M, Wieczorek A. Expression of proteins associated with therapy resistance in rhabdomyosarcoma and neuroblastoma tumour cells. Pol J Pathol. 2009;60:168–73.

    PubMed  Google Scholar 

  22. Oda Y, Kohashi K, Yamamoto H, Tamiya S, Kohno K, Kuwano M, et al. Different expression profiles of Y-box-binding protein-1 and multidrug resistance-associated proteins between alveolar and embryonal rhabdomyosarcoma. Cancer Sci. 2008;99:726–32.

    Article  CAS  PubMed  Google Scholar 

  23. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229:355–78.

    Article  CAS  PubMed  Google Scholar 

  24. Sadikovic B, Graham C, Ho M, Zielenska M, Somers GR. Immunohistochemical expression and cluster analysis of mesenchymal and neural stem cell-associated proteins in pediatric soft tissue sarcomas. Pediatr Dev Pathol. 2011;14:259–72.

    Article  CAS  PubMed  Google Scholar 

  25. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, et al. Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J. 2011;25:2022–30.

    Article  CAS  PubMed  Google Scholar 

  26. Takenobu H, Shimozato O, Nakamura T, Ochiai H, Yamaguchi Y, Ohira M, et al. CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene. 2011;30:97–105.

    Article  CAS  PubMed  Google Scholar 

  27. Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2:951–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013;110:6829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimozato O, Waraya M, Nakashima K, Souda H, Takiguchi N, Yamamoto H, et al. Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene. 2014;34:1949–60.

    Article  PubMed  Google Scholar 

  30. Krupkova Jr O, Loja T, Zambo I, Veselska R. Nestin expression in human tumors and tumor cell lines. Neoplasma. 2010;57:291–8.

    Article  PubMed  Google Scholar 

  31. Zambo I, Hermanova M, Adamkova Krakorova D, Mudry P, Zitterbart K, Kyr M, et al. Nestin expression in high-grade osteosarcomas and its clinical significance. Oncol Rep. 2012;27:1592–8.

    PubMed  Google Scholar 

  32. Olsen SH, Thomas DG, Lucas DR. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol. 2006;19:659–68.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy AJ, Viero S, Ho M, Thorner PS. Diagnostic utility of nestin expression in pediatric tumors in the region of the kidney. Appl Immunohistochem Mol Morphol. 2009;17:517–23.

    Article  CAS  PubMed  Google Scholar 

  34. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene. 2012;31:2270–82.

    Article  CAS  PubMed  Google Scholar 

  35. Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, et al. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 2010;24:501–5.

    Article  CAS  PubMed  Google Scholar 

  36. Walter D, Satheesha S, Albrecht P, Bornhauser BC, D’Alessandro V, Oesch SM, et al. CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres. PLoS One. 2011;6, e19506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells. 2009;27:40–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286:41434–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santini R, Pietrobono S, Pandolfi S, Montagnani V, D’Amico M, Penachioni JY, et al. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014;33:4697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bareiss PM, Paczulla A, Wang H, Schairer R, Wiehr S, Kohlhofer U, et al. SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res. 2013;73:5544–55.

    Article  CAS  PubMed  Google Scholar 

  41. Liu XF, Yang WT, Xu R, Liu JT, Zheng PS. Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One. 2014;9, e87092.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rybak AP, Tang D. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal. 2013;25:2734–42.

    Article  CAS  PubMed  Google Scholar 

  43. Nakatsugawa M, Takahashi A, Hirohashi Y, Torigoe T, Inoda S, Murase M, et al. SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity. Lab Invest. 2011;91:1796–804.

    Article  CAS  PubMed  Google Scholar 

  44. Chou YT, Lee CC, Hsiao SH, Lin SE, Lin SC, Chung CH, et al. The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells. 2013;31:2607–19.

    Article  CAS  PubMed  Google Scholar 

  45. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  PubMed  Google Scholar 

  46. Siegle JM, Basin A, Sastre-Perona A, Yonekubo Y, Brown J, Sennett R, et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun. 2014;5:4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang C, Hou C, Zhang H, Wang D, Ma Y, Zhang Y, et al. miR-126 functions as a tumor suppressor in osteosarcoma by targeting Sox2. Int J Mol Sci. 2013;15:423–37.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Johana Maresova, Marcela Vesela, and Dr. Jan Verner for their skillful technical assistance. This study was supported by the project no. NT13443-4 from the Internal Grant Agency of the Czech Ministry of Healthcare, by the project no. LQ1605 from the National Program of Sustainability II, and by the European Regional Development Fund—Project CEB no. CZ.1.07/2.3.00/20.0183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Veselska.

Ethics declarations

The Research Ethics Committee of the School of Science (Masaryk University) approved the study protocol, and a written statement of informed consent was obtained from each participant or his/her legal guardian prior to participation in this study. This study was approved by the Institutional Animal Care and Use Committee of Masaryk University and was registered by the Ministry of Agriculture of the Czech Republic as required by national legislation.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoda, J., Nunukova, A., Loja, T. et al. Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice. Tumor Biol. 37, 9535–9548 (2016). https://doi.org/10.1007/s13277-016-4837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4837-0

Keywords

Navigation