Skip to main content
Log in

Single-Step Synthesis and Surface Plasmons of Bismuth-Coated Spherical to Hexagonal Silver Nanoparticles in Dichroic Ag:Bismuth Glass Nanocomposites

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Here, we report for the first time the synthesis of bismuth-coated silver nanoparticles in dichroic bismuth glass nanocomposites by a novel and simple one-step melt quench technique without using any external reducing agent. The metallic silver nanoparticles (Ag NPs) were generated first, and subsequently, metallic bismuth was deposited on the Ag NPs and formed a thick layer. The reduction of Bi3+ to Bio and subsequently its deposition on the Ag NPs (which were formed earlier than Bio) in the K2O–Bi2O3–B2O3 (KBB) glass system have been explained by their standard reduction potentials. The UV–vis absorption spectra show a prominent surface plasmon resonance (SPR) absorption band at 575 nm at lower concentrations (up to 0.01 wt%); three bands at 569, 624 and 780 nm at medium concentration (0.02–0.03 wt%); and two weak bands at 619 and 817 nm at highest concentration (0.06 wt%) of silver. They have been explained by the electrodynamics theories. TEM images reveal the conversion of spheroidal (5–15 nm) to hexagonal (10–35 nm) shaped Ag NPs with the increase in concentration of silver (up to 0.06 wt%). SAED pattern confirms the crystalline planes of rhombohedral bismuth and cubic silver. Thermal treatment at 360 °C, which is the glass transformation temperature (T g) of the sample containing lower concentration of silver (0.007 wt%), shows red-shifted SPR band due to increase in size of NPs. Whereas the sample containing higher concentration (0.06 wt%) of silver under similar treatment exhibited changes in SPR spectral profile happened due to conversion to spherical NPs from hexagonal shape and reduction in size (10–20 nm) of NPs after heat treatment for 65 h. HRTEM images corroborate the different orientations of the NPs. FESEM images reveal hexagonal disk like structure having different orientations. Dichroic nature of the nanocomposites has been explained with the size and shape of Ag nanoparticles. We believe that this work will create new avenues in the area of nanometal–glass hybrid nanocomposites and the materials have significant applications in the field of optoelectronics and nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bréchignac C, Houdy P, Lahmani M (2007) Nanomaterials and nanochemistry. Springer, Berlin

    Book  Google Scholar 

  2. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles 108: 845–910

  3. Schiffrin DJ (2004) Faraday discussions: nanoparticle assemblies, vol 125. RSC, Cambridge

    Google Scholar 

  4. Rao CNR, Műller A, Cheetham AK (2004) The chemistry of nanometals: synthesis, properties and applications, vol 2. Wiley, Weinheim

    Book  Google Scholar 

  5. Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  6. Houk RJT, Jacobs BW, Gabaly FEI, Chang NN, Talin AA, Graham DD, House SD, Robertson IM, Allendort MD (2009) Nano Lett 9:3413–3418

    Article  CAS  Google Scholar 

  7. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Duyne RPV (2006) Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  8. Choi B-h, Lee H-H, Jin S, Chun S, Kim S-H (2007) Nanotechnology 18:075706-1-5

    Google Scholar 

  9. Konta R, Kato H, Kobayashi H, Kudo A (2003) Phys Chem Chem Phys 5:3061–3065

    Article  CAS  Google Scholar 

  10. Huxter VM, Scholes GD (2009) J Nanophotonics 3:032504-1-15

    Article  Google Scholar 

  11. Magruder RH III, Robinson SJ, Smith C, Meldrum A, Halabica A, Haglund RF Jr (2009) J Appl Phys 105:024303-1-5

    Article  Google Scholar 

  12. Bhattacharyya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Nano Lett 9:2493–2496

    Article  CAS  Google Scholar 

  13. Benahmed AJ, Ho C-M (2007) Appl Opt 46:3369–3375

    Article  Google Scholar 

  14. Okamoto T, H’Dhili F, Kawata S (2004) Appl Phys Lett 85:3968–3970

    Article  CAS  Google Scholar 

  15. Scalora M, Bloemer MJ, Pethel AS, Dowling JP, Bowden CM, Manka AS (1998) J Appl Phys 83:2377–2383

    Article  CAS  Google Scholar 

  16. Stalmashonak A, Unal AA, Graener H, Seifert G (2009) J Phys Chem C 113:12028–12032

    Article  CAS  Google Scholar 

  17. An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2007) J Phys Chem C 111:18055–18059

    Article  CAS  Google Scholar 

  18. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  19. Blondeau JP, Veron O, Catan F, Kaitasov O, Sbai N, Andreazza-Vignolle C (2009) Plasmonics 4:245–252

    Article  CAS  Google Scholar 

  20. Zhang Y, Yang Y, Zheng J, Hua W, Chen G (2008) J Am Ceram Soc 91:3410–3412

    Article  CAS  Google Scholar 

  21. Sanz O, Haro-Poniatowski E, Gonzalo J, Navarro JMF (2006) J NonCryst Solids 352:761–768

    Article  CAS  Google Scholar 

  22. Deparis O, Mezzapesa FP, Corbari C, Kazansky PG, Sakaguchi K (2005) J NonCryst Solids 351:2166–2177

    Article  CAS  Google Scholar 

  23. Kustov EF, Bulatov LI, Dvoyrin VV, Mashinsky VM (2009) Opt Lett 34:1549–1551

    Article  CAS  Google Scholar 

  24. Cortie MB, Xu X, Ford MJ (2006) Phys Chem Chem Phys 8:3520–3527

    Article  CAS  Google Scholar 

  25. Vanýsek P (1994) Electrochemical series. In: Lide DR (ed) CRC hand book of chemistry and physics. CRC, London, p 22

    Google Scholar 

  26. Ould-Ely T, Thurston JH, Kumar A, Respaud M, Guo W, Weidenthaler C, Whitmire KH (2005) Chem Mater 17:4750–4754

    Article  CAS  Google Scholar 

  27. Gutiérrez M, Henglein A (1996) J Phys Chem 100:7656–7661

    Article  Google Scholar 

  28. Katsikas L, Gutie’rrez M, Henglein A (1996) J Phys Chem 100:11203–11206

    Article  CAS  Google Scholar 

  29. Michaelis M, Henglein A, Mulvaney P (1994) J Phys Chem 98:6212–6215

    Article  CAS  Google Scholar 

  30. Moore JT, Lukehart CM (2002) J Mater Chem 12:288–290

    Article  CAS  Google Scholar 

  31. Sun Y, Qiao R (2008) Nano Res 1:292–302

    Article  CAS  Google Scholar 

  32. Weyl WA (1951) Colored glasses. Society of Glass Technology, Sheffield, p 329

    Google Scholar 

  33. Magruder RH III, Robinson SJ, Smith C, Meldrum A, Halabica A, Haglund RF Jr (2009) J Appl Phycol 105:024303-1-5

    Google Scholar 

  34. Mie G (1908) Ann Phys (Leipz) 330:377–445

    Article  Google Scholar 

  35. Kreibig U, Quinten M (1994) In: Haberland H (ed) Clusters of atoms and molecules. Vol II. Springer, Berlin, p 321

    Google Scholar 

  36. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  37. Gonella F, Mazzoldi P (2000) Metal nanocluster composite glasses. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Vol 4. Academic, London, pp 81–101

    Chapter  Google Scholar 

  38. Hutter E, Fendler JH (2004) Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  39. Gans R (1912) Ann Phys 37:881–900

    Article  CAS  Google Scholar 

  40. Amendola V, Bakr OM, Stellacci F (2010) Plasmonics 5:85–97

    Article  CAS  Google Scholar 

  41. Zhang JZ, Noguez C (2008) Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  42. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  43. Bruzzone S, Arrighini GP, Guidotti C (2003) Mater Sci Eng C 23:965–970

    Article  Google Scholar 

  44. Jorge P’-J, Isabel P-S, Luis ML-M, Paul M (2005) Coordin Chem Rev 249:1870–1901

    Article  Google Scholar 

  45. Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  46. Rodríguez-González B, Sánchez-Iglesias A, Giersig M, Liz-Marzán LM (2004) Faraday Discuss 125:133–144

    Article  Google Scholar 

  47. Moores A, Goettmann F (2006) New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  48. Arnold GW (1975) J Appl Phys 46:4466–4473

    Article  CAS  Google Scholar 

  49. Sheng J, Kadono K, Yazawa T (2003) J NonCryst Solids 324:295–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SPS express his sincere gratitude for the financial support of the Council of Scientific and Industrial Research (CSIR), New Delhi in the form of CSIR-SRF under sanction number 31/15(78)/2010-EMR-I. The authors thank Prof. Indranil Manna, Director of the institute for his kind permission to publish this paper. We also thankfully acknowledge the XRD and Electron Microscope Divisions of this institute for recording the XRD, TEM, SAED and FESEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Karmakar, B. Single-Step Synthesis and Surface Plasmons of Bismuth-Coated Spherical to Hexagonal Silver Nanoparticles in Dichroic Ag:Bismuth Glass Nanocomposites. Plasmonics 6, 457–467 (2011). https://doi.org/10.1007/s11468-011-9224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9224-5

Keywords

Navigation