Skip to main content
Log in

Occurrence and distribution of earthworms in agricultural landscapes across Europe with regard to testing for responses to plant protection products

  • SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Within the regulatory framework for authorisation of plant protection products (PPPs) (EU Directive 91/414/1991/EEC replaced by Regulation (EC) 1107/2009), higher tier risk assessments and earthworm field tests are conducted in different countries across Europe. This paper describes dominant earthworm species for regulatory and biogeographical regions in agricultural landscapes across Europe and examines regional differences in earthworm communities and densities and their respective response to a toxic reference.

Materials and methods

For the assessment of earthworm abundance and species distribution, data of untreated control plots from 30 earthworm field studies were analysed; each conducted according to the ISO 11268–3 (1999) guideline by European Crop Protection Association member companies in the context of registration of PPPs. For the evaluation of the response to PPPs under different regional and climatic conditions, the effect on earthworm abundance was assessed by comparing plots treated with toxic references with untreated control plots. Additionally, a comparative literature review was included providing an overview of earthworm species composition and densities in agricultural crops from 14 European countries.

Results and discussion

The assessment of earthworm field studies from six different European countries revealed that common earthworm species of anecic and endogeic ecological groups are present at most field sites. Dominant species groups of endogeic and anecic earthworms can be defined that are abundant in all assessed countries. These are the endogeic species Aporrectodea caliginosa, Aporrectodea rosea and Allolobophora chlorotica, and the anecic species Lumbricus terrestris (Northern and Central Europe) and Lumbricus friendi (Southern Europe). Taking into account the high variability in total earthworm abundances, it can be concluded that the variability within regions was larger than the variability between regions.

Conclusions

Analysis of the earthworm community and data of toxic references lead to the conclusion that testing in different zones is not considered necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauchhenss J (1991) Vergleichende Untersuchungen der Individuendichte, Biomasse, Artendichte und Diversität von Regenwurmpopulationen auf konventionell und alternativ bewirtschafteten Flächen. Bayer Landw Jahrbuch 68:430–443

    Google Scholar 

  • Bauer R (2004) Bodenzoologische Untersuchungen (Lumbricidae und Enchytraeidae) auf den BDF 1 – 8, Endbericht an das Amt der Salzburger Landesregierung

  • BBA (Biologische Bundesanstalt) (1994) Richtlinien für die amtliche Prüfung von Pflanzenschutzmitteln, Nr. VI, 2–3, Auswirkungen von Pflanzenschutzmitteln auf Regenwürmer im Freiland

  • Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Org 81:175–196

    Google Scholar 

  • Binet F, Hallaire V, Curmi P (1997) Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biol Biochem 29(3/4):577–583

    Article  CAS  Google Scholar 

  • Bouché MB (1972) Lombriciens de France—Ecologie et systématique. INRA Publication Annales de Zoologie. Ecol Anim, Numéro Hors-Sér 72–2:671

    Google Scholar 

  • Butt KR, Grigoropoulou N (2010) Review article: basic research tools for earthworm ecology applied and environmental soil science, vol. 2010, Article ID 562816, 12 pp

  • Butt KR, Nieminen MA, Sirén T, Ketoja E, Nuutinen V (2005) Population and behavioural level responses of arable soil earthworms to boardmill sludge application. Biol Fert Soils 42(2):163–167

    Article  Google Scholar 

  • Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130

    Article  Google Scholar 

  • Decaėns T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Appl Soil Ecol 39(3):321–335

    Article  Google Scholar 

  • Didden WAM (2001) Earthworm communities in grasslands and horticultural soils. Biol Fertil Soils 33:111–117

    Article  Google Scholar 

  • Easton EG (1983) A guide to the valid names of Lumbricidae (Oligochaeta). In: Satchell JE (ed) Earthworm ecology. Chapman & Hall, London, pp 475–487

    Chapter  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London, p 97

    Google Scholar 

  • Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, London, p 103

    Google Scholar 

  • EEC (2003) SANCO/10329. Guidance document on terrestrial ecotoxicology under council directive 91/414/EEC. Rev. 2

  • EFSA (2010) EFSA Panel on Plant Protection Products and their Residues (PPR): scientific opinion on the development of a soil ecoregions concept using distribution data on invertebrates. EFSA J 8(10):1820 [77 pp], available online: www.efsa.europa.eu/efsajournal.htm

  • Ehrmann O (2012) Auswirkungen des Klimawandels auf die Regenwürmer Baden-Württembergs, Literaturstudie zur Bedeutung von Regenwürmern und den möglichen Auswirkungen des Klimawandels auf Arten und Populationen der Regenwürmer, LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe, available online: http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/101762/?COMMAND=DisplayBericht&FIS=91063&OBJECT=101762&MODE=METADATA

  • EU (European Union) (1991) Council directive concerning the placing of plant protection products on the market. No. 91/414/EEC. Brussels, Belgium

  • Finck A (1952) Ökologische und Bodenkundliche Studien über die Leistungen der Regenwürmer für die Bodenfruchtbarkeit. Z Pflanzenernähr, Düngung, Bodenkd 58:120–145

    Article  Google Scholar 

  • Gnan R (2002) Analyse und Bewertung der Abundanz und des Artenspektrums von Regenwurmpopulationen (Lumbriciden) in ackerbaulich genutzten Böden des Lehr- und Versuchsbetriebes Gladbacherhof der Justus-Liebig-Universität Gießen. Diplomarbeit 2002 [online] Giessen, Univ., URL: http://geb.uni-giessen.de/geb/volltexte/2004/1715/

  • Graff O (1953) Die Regenwürmer Deutschlands. Verlag Schaper, Hannover

    Google Scholar 

  • Gullich P, Paul R, Marre G (2008) Ergebnisse der Bodendauerbeobachtung auf landwirtschaftlich genutzten Flächen in Thüringen, 120. VDLUFA-Kongress in Jena, 16.-19. September 2008

  • Hutcheon JA, Iles DR, Kendall DA (2001) Earthworm populations in conventional and integrated farming systems in the LIFE project (SW England) in 1999–2000. Ann Appl Biol 139:361–372

    Article  Google Scholar 

  • ISO (International Organisation for Standardisation) (1999) Soil quality—effects of pollutants on earthworms. Part 3: Guidance on the determination of effects in field situations. ISO No. 11268–3

  • Joschko M, Gebbers R, Barusky D, Rogasik J, Höhn W, Hierold W, Fox CA, Timmer J (2009) Location-dependency of earthworm response to reduced tillage on sandy soil. Soil Till Res 102:55–66

    Article  Google Scholar 

  • Kasprzak K (1987) Structure of the earthworm (Oligochaeta: Lumbricidae) communities of natural and anthropogenic ecosystems in lowland and mountain areas of Poland. In: Bonvicini Pagliai AM, Omodeo P (eds) On earthworms. Mucchi, Modena, pp 297–313

    Google Scholar 

  • Krogh PH, Griffiths B, Demšar D, Bohanec M, Debeljak M, Andersen MN, Sausse C, Birch ANE, Caul S, Holmstrup M, Heckmann LH, Cortet J (2007) Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems. Pedobiologia 51:219–227

    Article  CAS  Google Scholar 

  • Kula C, Heimbach F, Riepert F, Römbke J (2006) Technical recommendations for the update of the ISO earthworm field test guideline (ISO 11268–3). J Soils Sediments 8(3):182–186

    Google Scholar 

  • Langer U, Kuhn K, Weniger T, Neubert E (2012) 17 Jahre Regenwurmerfassung auf Boden-Dauerbeobachtungsflächen (BDF) in Sachsen-Anhalt, Landesamt für Umweltschutz Sachsen-Anhalt, 26 pp

  • Lee KE (1985) Earthworms—their ecology and relationship with soils and land use. Academic Press, New York

    Google Scholar 

  • LFU (2011) Den Boden fest im Blick—25 Jahre Bodendauerbeobachtung in Bayern, Gemeinsame Fachtagung des LfU und der Landesanstalten für Landwirtschaft (LfL) sowie für Wald und Forstwirtschaft (LWF) am 13.10.2011, Bayrisches Landesamt für Umwelt (LfU), Augsburg, 90 pp

  • Makulec G (2004) Lumbricidae communities in several years old midfield shelterbelt (Turew region, western Poland). Pol J Ecol 52(2):173–179

    Google Scholar 

  • Onteniente DAP (1997) Lombrices de tierra de la comunidad Valencia: faunística, ecología y parasitología. Doctoral thesis, University of Valencia, Faculty of Biology, Department of Animal Biology, 376 pp

  • Paoletti MG (1988) Soil invertebrates in cultivated and uncultivated soils in northeastern Italy. Estratto Redia 71:501–563

    Google Scholar 

  • Paoletti MG, Iovane E, Cortese M (1988) Pedofauna bioindicators and heavy metals in five agroecosystems in north-east Italy. Rev Ecol Biol Sol 25:33–58

    CAS  Google Scholar 

  • Pelosi C, Bertrand M, Capowiez Y, Boizard H, Roger-Estrade J (2009) Earthworm collection from agricultural fields: comparisons of selected expellants in presence/absence of hand-sorting. Eur J Soil Biol 45(2):176–183

    Article  Google Scholar 

  • Pižl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24(12):1623–1628

    Article  Google Scholar 

  • Raw F (1959) Estimating earthworm populations by using formalin. Nature 184:1661–1662

    Article  Google Scholar 

  • Regulation (EC) 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC

  • Römbke J, Dreher P, Beck, L, Hund-Rinke K, Jänsch S, Kratz, W, Pieper S, Ruf A, Spelda J, Woas S (2002) Entwicklung von bodenbiologischen Bodengüteklassen für Acker- und Grünlandstandorte, in: Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Forschungsbericht 299 74 294, UBA-FB 000268, Texte 20–02, Umweltbundesamt, pp 273

  • Schmidt O (2001) Appraisal of the electrical octet method for estimating earthworm populations in arable land. Ann Appl Biol 138:231–241

    Article  Google Scholar 

  • Schmidt O, Curry JP (2001) Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheat-clover cropping systems. Pedobiologia 45:174–187

    Article  Google Scholar 

  • Schmidt O, Curry JP, Hackett RA, Purvis G, Clements RO (2001) Earthworms communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Ann Appl Biol 138:377–388

    Article  Google Scholar 

  • Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworm populations? Appl Soil Ecol 22:18–190

    Article  Google Scholar 

  • Scullion J, Neale S, Philipps L (2002) Comparisons of earthworm populations and cast properties in conventional and organic arable rotations. Soil Use Manage 18:293–300

    Article  Google Scholar 

  • Sims RW, Gerard BM (1985) Earthworms. Keys and notes to the identification and study of the species. Synopsis of the British Fauna (New series), 31. The Linnean Society of London and the Estuarine and Coastal Sciences Association, UK

    Google Scholar 

  • Ter Braak CJV, Smilauer P (2002) CANOCO for Windows Version 4.5. Biometrics Plant Research International, Wageningen

    Google Scholar 

  • Tischer S (2010) Lumbricidenuntersuchungen an Boden-Dauerbeobachtungsflächen in Thüringen, Bericht 2010, Thüringer Landesanstalt für Umwelt und Geologie (TLUG), Martin-Luther-Universität, Institut für Agrar- und Ernährungswissenschaften, Bodenbiogeochemie, Halle /Saale

  • Topoliantz S, Ponge JF, Viaux P (2000) Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant Soil 225(1–2):39–51

    Article  CAS  Google Scholar 

  • Valckx J, Hermy M, Muys B (2006) Indirect gradient analysis at different spatial scales of prorated and non-prorated earthworm abundance and biomass data in temperate agro-ecosystems. Eur J Soil Biol 42:341–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Dinter.

Additional information

Responsible editor: Juxiu Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinter, A., Oberwalder, C., Kabouw, P. et al. Occurrence and distribution of earthworms in agricultural landscapes across Europe with regard to testing for responses to plant protection products. J Soils Sediments 13, 278–293 (2013). https://doi.org/10.1007/s11368-012-0620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0620-z

Keywords

Navigation