Skip to main content

Advertisement

Log in

Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion

  • LCA OF WASTE MANAGEMENT SYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

This life cycle assessment (LCA) study compares two prevalent end-of-life (EOL) treatment methods for scrap tires: material recycling and energy recovery. The primary intended use of the study results is to inform stakeholders of the relative environmental burdens and trade-offs associated with these two EOL vehicle tire treatment methods. The study supports prioritization of the waste treatment hierarchy for this material stream in the US.

Methods

This LCA compares (1) material recycling through ambient-temperature mechanical processing and (2) energy recovery through co-incineration of both whole and preprocessed scrap tires at a cement kiln. The avoided burden recycling methodology reflects the substitution of virgin synthetic rubber used in asphalt modification with the ground tire rubber from material recycling and the substitution of conventional kiln fuels with the tire-derived fuel (TDF). Both attributional (ALCA) and consequential (CLCA) methodologies are used: the ALCA assesses the environmental profiles of the treatment methods and the CLCA examines the potential effects of shifting more scrap tires to material recycling. The attributional portion of the LCA study was conducted in accordance with ISO standards 14044 series.

Results

The results in both methodological approaches indicate that the material recycling scenario provides greater impact reductions than the energy recovery scenario in terms of the examined environmental impact potentials: energy demand, iron ore consumption, global warming potential, acidification, eutrophication, smog formation, and respiratory effects. The additional impact reductions from material recycling are significant, and the establishment of new infrastructure required for a shift to material recycling incurs relatively insignificant burdens. Sensitivity analyses indicate that this conclusion does not change for (1) a range of TDF heating values, (2) a decrease in the mixed scrap tire rubber-to-steel composition ratio, (3) two alternative electricity grid fuel mixes with higher and lower carbon dioxide emission rankings than that of the baseline scenario, or (4) a comparison of material recycling to energy recovery when TDF is used in pulp and paper mills instead of cement kilns.

Conclusions

These results provide a basis for more informed decision-making when prioritizing scrap tire waste treatment hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AISI (2009) American Iron and Steel Institute. Available at http://www.steel.org/

  • Annamalai K, Puri K (2007) Heating value. Combustion science and engineering. CRC, Boca Raton, p 170

    Google Scholar 

  • Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3–4):49–78

    Google Scholar 

  • Berkley R, Romagosa H (2008) SBS polymer supply outlook. AMAP White Paper of SBS Supply Outlook, Prepared by the Association of Modified Asphalt Producers. Available at http://www.modifiedasphalt.org/wp/wp-content/uploads/AMAP-White-Paper-on-SBS-supply-outlook.pdf. Accessed 25 April 2010

  • Blumenthal MH (1992a) The use of scrap tyres in the U.S. cement industry. Rubber Manufacturers’ Association, December 1992. Available at http://www.rma.org/getfile.cfm?ID=507&type=publication

  • Blumenthal MH (1992b) The use of scrap tires in rotary cement kilns. Scrap Tire Management Council, Rubber Manufacturers’ Association, August 3, 1992. Available at http://www.rma.org/scrap_tires/scrap_tire_markets/cement_kiln_report.pdf

  • Boateng AA (2008) Combustion and flame in rotary kilns: transport phenomena and transport processes. Butterworth-Heinemann, Burlington, pp 129–172

    Google Scholar 

  • Boesch ME, Koehler A, Hellweg S (2009) Model for cradle-to-gate life cycle assessment of clinker production: supporting information. Environ Sci Technol 43:7578–7583

    Article  CAS  Google Scholar 

  • CA IWMB (2003) Assessment of markets for fiber and steel produced from recycling waste tires. Report for California Integrated Waste Management Board, August 2003. Publication No. 622-03-010

  • Caltrans (2006) Asphalt rubber usage guide. State of California Department of Transportation, Materials Engineering and Testing Services, Office of Flexible Pavement Materials, California Department of Transportation, September 2006

  • Clauzade C, Osset P, Hugrel C, Chappert A, Durande M, Palluau M (2010) Life cycle assessment of nine recovery methods for end-of-life tyres. Int J Life Cycle Assess 15:883–892

    Article  Google Scholar 

  • Curran MA, Mann M, Norris G (2002) Summary Report on the International Workshop on Electricity Data for Life Cycle Inventories. Workshop held at the Breidenbach Research Center, Cincinnati, Ohio, 23–25 October 2001, EPA Report: EPA/600/R-02/041

  • Dodds J, Domenico WF, Evans DR et al (1983) Scrap tires: a resource and technology evaluation of tire pyrolysis and other selected alternative technologies. U.S. Department of Energy Report (DOE), EGG-2241

  • EIA (2009a) Table 8.2a electricity net generation: total (all sectors), 1949–2009, annual energy review. U.S. Energy Information Administration

  • EIA (2009b) Annual energy outlook 2009: with projections to 2030. U.S. Department of Energy EIA Office of Integrated Analysis and Forecasting, DOE/EIA-0383(2009). Available at http://www.eia.doe.gov/oiaf/aeo/

  • EPA (1997) Air emissions from scrap tire combustion. Report prepared for the U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and U.S.–Mexico Border Information Center on Air Pollution, Clean Air Technology Center, Office of Research and Development, EPA-600/R-97-115, October 1997

  • EPA (2000) Default data and data input requirements for the municipal solid waste management decision support tool. U.S. EPA Office of Research and Development, December 2000

  • EPA (2004) Emission factor documentation for AP-42, section 11.1, hot mix asphalt plants. Final report prepared for U.S. EPA, Office of Air Quality Planning and Standards, Emission Measurement Center by RTI International, February 2004; updated April 2004

  • EPA (2006) Application of life-cycle management to evaluate integrated municipal solid waste management strategies. U.S. EPA Office of Research and Development, updated May 2006

  • EPA (2012) Solid waste management hierarchy, wastes–non-hazardous waste–municipal solid waste. US EPA 2012. Available at http://www.epa.gov/osw/nonhaz/municipal/hierarchy.htm

  • FABES (2006) Fabes Research GmbH for analysis and evaluation of chemical transitions. Emission Study Asphalt Road+. On behalf of Degussa AG, 2006, as quoted in Schmidt et al. 2009

  • Gray T (2004) Tire derived fuel: environmental characteristics and performance. Presented by Terry Gray, President, TAG Resource Recovery at the First Northeast Regional Scrap Tire Conference, Albany, New York, 15 June 2004

  • HeidenLabor (2005) Investigation report no. 48/2005. Binders Road+ study with modified bitumen. On behalf of Degussa AG, 2005.Heiden Labor für Baustoff- und Umweltprüfung, Roggentin, GmbH (Heiden Laboratory for Building Materials and Environmental Assessment), Rostock, Germany

  • IFEU (1998) Ecological balances in waste management. Case examples. Recycling of scrap tires and household refrigerators. Fehrenbach, Giegrich, Orlik, IFEU Heidelberg. On behalf of the Federal Environmental Agency Berlin, 1998 (UBA-Texte 10/99)

  • Jones RM, Kennedy JM, Heberer NI (1990) Supplementary firing of tire-derived fuel (TDF) in a combination fuel boiler. TAPPI Journal, May 1990 as quoted in EPA (1997) Air emissions from scrap tire combustion. Report prepared for the U.S. EPA, Office of Air Quality and Planning Standards, Office of Research and Development, EPA-600/R-97-115, October 1997

  • Kaell MA, Blumenthal MH (2001) Air regulatory impacts of the use of tire-derived fuel. Environ Prog 20(2):80–86

    Article  Google Scholar 

  • Kraton (2011) Kraton Industries, Product Data Sheets. Available at http://www.kraton.com/Products/Kraton_D_SBS/

  • Lindner F (2007) Communication with Frank Lindner, Degussa GmbH, Germany as quoted in Schmidt et al. 2009

  • McGraw JL, Lott L (2005) The IISRP and our perspective on polymer modified asphalt. Dexco Polymers, International Institute of Synthetic Rubber Producers, Inc. Available at http://amap.ctcandassociates.com/wp/wp-content/uploads/McGraw06.pdf

  • MUNLV (2001) Waste from sewage treatment plants in North Rhine-Westphalia; reports the environment, the area of waste volume 5, IFEU study of the Institute; Ministry of Environment and Conservation, Agriculture and Consumer Protection (ed.), Düsseldorf 2001

  • MUNLV (2007) LCA of thermal management systems for flammable waste in North Rhine-Westphalia. Ministry of Environment and Conservation, Agriculture and Consumer Protection North Rhine-Westphalia

  • Nakajima Y, Matsuyuki M (1981) Utilization of waste tires as fuel for cement production. Conserv Recycl 4(3):145–151

    Article  CAS  Google Scholar 

  • PCA (2006) Life cycle inventory of Portland cement manufacture. PCA R&D Serial No. 2095b

  • RMA (1999–2007) Scrap tire markets in the United States. Series of biennial reports compiled by the Rubber Manufacturers Association

  • RMA (2009a) Scrap tire markets in the United States. 9th Biennial Report, Rubber Manufacturer’s Association, May 2009. Available at http://www.rma.org/scrap_tires/

  • RMA (2009b) Typical composition by weight, scrap tire characteristics, scrap tire markets. Rubber Manufacturer’s Association Scrap Tires Site. Available at http://www.rma.org/scrap_tires/scrap_tire_markets/scrap_tire_characteristics/. Accessed on September 20, 2009

  • RMA (2009c) 2009—RMA Newsroom. 2008 Tire shipments revised to drop sixteen percent. Available at http://www.rma.org/newsroom/release.cfm?ID=272

  • Schmidt A, Kløverpris NH, Bakas I, Kjaer J, Vogt R, Giegrich J (2009) Comparative life cycle assessment of two options for waste tyre treatment: material recycling vs. co-incineration in cement kilns. Prepared by FORCE Technology, Copenhagen Resource Institute, and IFEU-Institut fur Energie- und Umweltforschung Heidelberg GmbH, 25 September 2009

  • Seyler C, Hellweg S, Monteil M, Hungerbuhler K (2005) Life cycle inventory for use of waste solvent as fuel substitute in the cement industry: a multi-input allocation model. Int J Life Cycle Assess 10(2):120–130

    Article  CAS  Google Scholar 

  • Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G (2000) Disposal of waste tyres for energy recovery and safe environment. Appl Energy 65:381–394

    Article  CAS  Google Scholar 

  • Singh S, Nimmo W, Gibbs BM, Williams PT (2009) Waste tyre rubber as a secondary fuel for power plants. Fuel 88:2473–2480

    Article  CAS  Google Scholar 

  • TCEQ/TxDOT (2004) Appendix D. Facilities that use texas tire derived fuel. Calendar Year 2002, 2004 Progress Report on Using Scrap Tires and Crumb Rubber in Texas Highway Construction Projects, Submitted Jointly by the Texas Commission on Environmental Quality (TCEQ) and the Texas Department of Transportation (TxDOT), Publication SFR-069/04, January 2004

  • TX NRCC (1999) Composition of a tire. Waste Tire Recycling Program, Office of Permitting, Texas Natural Resource Conservation Commission (TNRCC), September 1999

  • US DOT (2012) Historical monthly VMT report. Travel Monitoring Policy Information, U.S. Department of Transportation, Federal Highway Administration

  • USGS (1999–2009) Minerals yearbook: cement. U.S. Geological Survey, U.S. Department of the Interior

  • Viridis (2003) Hylands (Viridis), Shulman (ETRA). Civil engineering applications of tyres. Viridis Report VR5 2003

Download references

Acknowledgments

The work presented in this paper is the result of research by Franklin Associates, A Division of ERG, commissioned by Genan Business & Development A/S. We gratefully acknowledge the provision of data and the invaluable discussions with Lars Raahauge of Genan Business & Development A/S and Anders Christian Schmidt and Nanja Hedal Kløverpris of FORCE Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebe Feraldi.

Additional information

Responsible editor: Shabbir Gheewala

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feraldi, R., Cashman, S., Huff, M. et al. Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion. Int J Life Cycle Assess 18, 613–625 (2013). https://doi.org/10.1007/s11367-012-0514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-012-0514-8

Keywords

Navigation