Skip to main content
Log in

Fluorescence Imaging and Whole-Body Biodistribution of Near-Infrared-Emitting Quantum Dots after Subcutaneous Injection for Regional Lymph Node Mapping in Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study compares fluorescence imaging to mass spectroscopy (inductively coupled plasma–mass spectroscopy, ICP–MS) for detection of quantum dots (QDs) in sentinel lymph node (LN) mapping of breast cancer.

Procedures

We study the accumulation of near-infrared-emitting QDs into regional LNs and their whole-body biodistribution in mice after subcutaneous injection, using in vivo fluorescence imaging and ex vivo elemental analysis by ICP–MS.

Results

We show that the QD accumulation in regional LNs is detectable by fluorescence imaging as early as 5 min post-delivery. Their concentration reaches a maximum at 4 h then decreases over a 10-day observation period. These data are confirmed by ICP–MS. The QD uptake in other organs, assessed by ICP–MS, increases steadily over time; however, its overall level remains rather low.

Conclusions

Fluorescence imaging can be used as a non-invasive alternative to ICP–MS to follow the QD accumulation kinetics into regional LNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

% ID:

Percentage of injected dose

Abs:

Absorbance

ALN:

Axillary lymph node

ALND:

Axillary lymph node dissection

AU:

Arbitrary unit

DLS:

Dynamic light scattering

DPPE:

Dipalmitoyl phosphotidylethanolamine

H&E:

Hematoxylin and eosin

HD:

Hydrodynamic diameter

ICP–AES:

Inductively coupled plasma–atomic emission spectroscopy

ICP–MS:

Inductively coupled plasma–mass spectroscopy

i.v.:

Intravenous

LALN:

Left axillary lymph node

LED:

Light-emitting diode

LLTLN:

Left lateral thoracic lymph node

LN:

Lymph node

LTLN:

Lateral thoracic lymph node

Me:

Methyl ether

microPET:

Micro-positron emission tomography

NIR:

Near-infrared

PBS:

Phosphate buffered saline

PEG:

Polyethylene glycol

PL:

Photoluminescence

QD:

Quantum dot

RALN:

Right axillary lymph node

RLTLN:

Right lateral thoracic lymph node

ROI:

Region of interest

s.c.:

Subcutaneous

SD:

Standard deviation

SLN:

Sentinel lymph node

SLNB:

Sentinel lymph node biopsy

TEM:

Transmission electron microscopy

TOP:

Trioctylphosphine

References

  1. Marchal F, Rauch P, Morel O et al (2006) Results of preoperative lymphoscintigraphy for breast cancer are predictive of identification of axillary sentinel lymph nodes. World J Surg 30:55–62

    Google Scholar 

  2. Rovera F, Frattini F, Marelli M et al (2008) Axillary sentinel lymph node biopsy: an overview. Int J Surg 6 Suppl:S109–112

    Article  Google Scholar 

  3. Ferrari A, Rovera F, Dionigi P et al (2006) Sentinel lymph node biopsy as the new standard of care in the surgical treatment for breast cancer. Expert Rev Anticancer Ther 6:1503–1515

    Article  PubMed  Google Scholar 

  4. Noguchi M (2002) Sentinel lymph node biopsy and breast cancer. Br J Surg 89:21–34

    Article  CAS  PubMed  Google Scholar 

  5. Wilke LG, McCall LM, Posther KE et al (2006) Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial. Ann Surg Oncol 13:491–500

    Article  PubMed  Google Scholar 

  6. Sato K (2007) Current technical overviews of sentinel lymph node biopsy for breast cancer. Breast Cancer 14:354–361

    Article  PubMed  Google Scholar 

  7. Sato K, Shigenaga R, Ueda S, Shigekawa T, Krag DN (2007) Sentinel lymph node biopsy for breast cancer. J Surg Oncol 96:322–329

    Article  CAS  PubMed  Google Scholar 

  8. Montgomery LL, Thorne AC, Van Zee KJ et al (2002) Isosulfan blue dye reactions during sentinel lymph node mapping for breast cancer. Anesth Analg 95:385–388

    Article  PubMed  Google Scholar 

  9. Scherer K, Studer W, Figueiredo V, Bircher AJ (2006) Anaphylaxis to isosulfan blue and cross-reactivity to patent blue V: case report and review of the nomenclature of vital blue dyes. Ann Allergy Asthma Immunol 96:497–500

    Article  CAS  PubMed  Google Scholar 

  10. Mujtaba B, Adenaike M, Yaganti V, Mujtaba N, Jain D (2007) Anaphylactic reaction to Tc-99 m sestamibi (Cardiolite) during pharmacologic myocardial perfusion imaging. J Nucl Cardiol 14:256–258

    Article  PubMed  Google Scholar 

  11. Chicken DW, Mansouri R, Ell PJ, Keshtgar MR (2007) Allergy to technetium-labelled nanocolloidal albumin for sentinel node identification. Ann R Coll Surg Engl 89:W12–W13

    Article  PubMed  Google Scholar 

  12. Kaleya RN, Heckman JT, Most M, Zager JS (2005) Lymphatic mapping and sentinel node biopsy: a surgical perspective. Semin Nucl Med 35:129–134

    Article  PubMed  Google Scholar 

  13. Murray CB, Norris DG, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E-S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  14. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  15. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  16. Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709

    Article  CAS  PubMed  Google Scholar 

  17. Derfus A, Chan WCW, Bhatia S (2004) Probing the cytotoxicity of CdSe quantum dots with surface modification. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  18. Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786

    Article  CAS  PubMed  Google Scholar 

  19. Carion O, Mahler B, Pons T, Dubertret B (2007) Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat Protoc 2:2383–2390

    Article  CAS  PubMed  Google Scholar 

  20. Pons T, Lequeux N, Mahler B et al (2009) Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots. Chem Mater 21(8):1418–1424

    Article  CAS  Google Scholar 

  21. Soltesz EG, Kim S, Kim SW et al (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13:386–396

    Article  PubMed  Google Scholar 

  22. Parungo CP, Colson YL, Kim SW et al (2005) Sentinel lymph node mapping of the pleural space. Chest 127:1799–1804

    Article  PubMed  Google Scholar 

  23. Soltesz EG, Kim S, Laurence RG et al (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79:269–277

    Article  PubMed  Google Scholar 

  24. Parungo CP, Ohnishi S, Kim SW et al (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850

    Article  PubMed  Google Scholar 

  25. Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681

    Article  PubMed  Google Scholar 

  26. Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi H, Hama Y, Koyama Y et al (2007) Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Lett 7:1711–1716

    Article  CAS  PubMed  Google Scholar 

  28. Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103:23–28

    Article  PubMed  Google Scholar 

  29. Ballou B, Ernst LA, Andreko S et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  CAS  PubMed  Google Scholar 

  30. Knapp DW, Adams LG, Degrand AM et al (2007) Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 52:1700–1708

    Article  PubMed  Google Scholar 

  31. Chen Z, Chen H, Meng H et al (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol 230:364–371

    Article  CAS  PubMed  Google Scholar 

  32. Fischer H, Liu L, Pang K, Chan W (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16:1299–1305

    Article  CAS  Google Scholar 

  33. Gopee NV, Roberts DW, Webb P et al (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98:249–257

    Article  CAS  PubMed  Google Scholar 

  34. Yang RS, Chang LW, Wu JP et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in Mice: ICP–MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  CAS  PubMed  Google Scholar 

  35. Duconge F, Pons T, Pestourie C et al (2008) Fluorine-18-Labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug Chem 19:1921–1926

    Article  CAS  PubMed  Google Scholar 

  36. Lin P, Chen JW, Chang LW et al (2008) Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ Sci Technol 42:6264–6270

    Article  CAS  PubMed  Google Scholar 

  37. Geys J, Nemmar A, Verbeken E et al (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116:1607–1613

    Article  CAS  PubMed  Google Scholar 

  38. Daou TJ, Li L, Reiss P, Josserand V, Texier I (2009) Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25(5):3040–3044

    Article  CAS  PubMed  Google Scholar 

  39. Kostarelos K (2009) Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharma 6(2):520–530

    Article  CAS  Google Scholar 

  40. Pic E, Bezdetnaya L, Guillemin F, Marchal F (2009) Quantification techniques and biodistribution of semiconductor quantum dots. Anticancer Agents Med Chem 9:295–303

    CAS  PubMed  Google Scholar 

  41. Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  PubMed  Google Scholar 

  42. Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol 127:2351–2356

    Article  CAS  PubMed  Google Scholar 

  43. Robe A, Pic E, Lassalle HP et al (2008) Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8:111

    Article  PubMed  CAS  Google Scholar 

  44. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  45. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  PubMed  Google Scholar 

  46. Tanis PJ, Nieweg OE, Valdes Olmos RA, Kroon BB (2001) Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy. J Am Coll Surg 192:399–409

    Article  CAS  PubMed  Google Scholar 

  47. Maysinger D, Behrendt M, Lalancette-Hebert M, Kriz J (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7:2513–2520

    Article  CAS  PubMed  Google Scholar 

  48. Clift MJ, Rothen-Rutishauser B, Brown DM et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL (2008) Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures. J Nanobiotechnol 6:11

    Article  CAS  Google Scholar 

  50. Stern ST, Zolnik BS, McLeland CB et al (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106:140–152

    Article  CAS  PubMed  Google Scholar 

  51. Jacobsen NR, Moller P, Jensen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol 6:2

    Article  PubMed  CAS  Google Scholar 

  52. Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas EN et al (2008) Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14:731–741

    Article  CAS  PubMed  Google Scholar 

  53. Soo Choi H, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  54. Schipper ML, Cheng Z, Lee SW et al (2007) microPET-based biodistribution of quantum dots in living mice. J Nucl Med 48:1511–1518

    Article  CAS  PubMed  Google Scholar 

  55. Schipper ML, Iyer G, Koh AL et al (2009) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134

    Article  CAS  PubMed  Google Scholar 

  56. Gao X, Chen J, Chen J et al (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19:2189–2195

    Article  CAS  PubMed  Google Scholar 

  57. Chen K, Li ZB, Wang H, Cai W, Chen X (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National du Cancer (INCa), the Comités départementaux (54, 57) of the Ligue Contre le Cancer, the Ligue Nationale Contre le Cancer, and the Région Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marchal.

Additional information

Manuscript category and significance

The present “research article” addresses near-infrared-emitting quantum dots detection by fluorescence imaging as a non-invasive and reliable method for identification of regional lymph nodes for their eventual use in breast tumor patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pic, E., Pons, T., Bezdetnaya, L. et al. Fluorescence Imaging and Whole-Body Biodistribution of Near-Infrared-Emitting Quantum Dots after Subcutaneous Injection for Regional Lymph Node Mapping in Mice. Mol Imaging Biol 12, 394–405 (2010). https://doi.org/10.1007/s11307-009-0288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0288-y

Key words

Navigation