Skip to main content
Log in

Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A dioxomolybdenum(VI) complex has been covalently anchored onto mesoporous titania by a silicon-assisted transesterification route. The grafting of the complex to the mesoporous structure was confirmed by diffuse reflectance infrared Fourier transform, Raman and UV–Vis spectroscopy and by nitrogen sorption experiments. The ability of the grafted complex to activate molecular oxygen (O2) has been evaluated in the photooxidation of diphenylmethane to produce benzophenone. The photooxidation of diphenylmethane was monitored continuously by in situ dispersive Raman spectroscopy. A scheme for the activation of molecular oxygen under very mild conditions is proposed. A comparison with the same complex anchored onto commercial titanium P-25 and silica gel revealed both the beneficial effect of the mesoporous structure and the existence of a synergistic effect between MoO/TiO2/O2/light entities, which promotes the photooxidation process under green chemistry conditions. Finally, the heterogeneous catalyst is sustainable; it can be recycled and reused without significant loss in activity or selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Watson RB, Ozkan US (2005) In: Grassian VH (ed) Environmental Catalysis. Taylor & Francis Group, Boca Raton

    Google Scholar 

  2. Vedernikov AN (2012) Acc Chem Res 45:803–813

    Article  CAS  Google Scholar 

  3. Council for chemical Research, U.S. DOE and ACS (1997) Catalyst technology roadmap report: build upon technology vision 2020: The U.S. Chemical Industry. ACS Workshop, Washington, DC

  4. Barton DHR, Martell AE, Sawyer DT (1993) The activation of dioxygen and homogeneous catalytic oxidation. Plenum press, New York

    Book  Google Scholar 

  5. Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley, New York

    Book  Google Scholar 

  6. Crabtree RH (2009) Handbook of green chemistry: set I: green catalysis. Wiley-VCH, New York

    Google Scholar 

  7. Rafelt JS, Clark JH (2000) Catal Today 57:33–44

    Article  CAS  Google Scholar 

  8. Choudary BM, Lakshmi Kantam M, Lakshmi Santhi P (2000) Catal Today 57:17–32

    Article  CAS  Google Scholar 

  9. For recent reviews in oxidations reactions by transitions metal complexes using molecular oxygen (O2), see special issue: (2012) Acc Chem Res 45:777–958

  10. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Chem Commun 33:3425–3437

    Article  Google Scholar 

  11. Shiraishi Y, Hirai T (2008) J Photochem Photobio C: Photochem Rev 9:157–170

    Article  CAS  Google Scholar 

  12. Mohamed OS, Gaber AM, Abdel-Wahab AA (2002) J Photochem Photobiol A: Chem 148:205–210

    Article  CAS  Google Scholar 

  13. Vijaikumar S, Somasundaram N, Srinivasan C (2002) Appl Catal A 223:129–135

    Article  CAS  Google Scholar 

  14. Bettoni M, Candori P, Marmottini F, Perenze N, Rol C, Sebastiani GV, Vecchiocattivi F (2009) Int J Photoenergy. doi:10.1155/2009/905987

    Google Scholar 

  15. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  Google Scholar 

  16. Páez CA, Castellanos NJ, Martínez F, Ziarelli F, Agrifoglio G, Páez-Mozo EA, Arzoumanian H (2008) Catal Today 133–135:619–624

    Article  Google Scholar 

  17. Páez CA, Lozada O, Castellanos NJ, Martínez F, Ziarelli F, Agrifoglio G, Páez-Mozo EA, Arzoumanian H (2009) J Mol Cat A: Chem 299:53–59

    Article  Google Scholar 

  18. Arzoumanian H, Castellanos NJ, Martínez F, Paez-Mozo EA, Ziarelli F (2010) Eur J Inorg Chem 1633–1641

  19. Van Der Voort P, Vercaemst C, Schaubroeck D, Verpoort F (2008) Phys Chem Chem Phys 10:347–360

    Article  Google Scholar 

  20. Wang K, Wei M, Morris MA, Zhou H, Holmes JD (2007) Adv Mater 19:3016–3020

    Article  CAS  Google Scholar 

  21. Zou XX, Li GD, Wang KX, Li L, Sub J, Chen JS (2010) Chem Commun 46:2112–2114

    Article  CAS  Google Scholar 

  22. Kubelka P, Munk F (1938) Z Tech Phys 12:593–601

    Google Scholar 

  23. Jahan F, Islam MH, Smith BE (1995) Sol Energy Mater Sol Cells 37:283–293

    Article  CAS  Google Scholar 

  24. Soler-Illia GJ, Louis A, Sanchez C (2002) Chem Mater 14:750–759

    Article  Google Scholar 

  25. Beyers E, Cool P, Vansant EF (2007) Microporous Mesoporous Mater 99:112–117

    Article  CAS  Google Scholar 

  26. Macyka W, Szaciłowski K, Stochel G, Buchalska M, Kuncewicz J, Łabuz P (2010) Coord Chem Rev 254:2687–2701

    Article  Google Scholar 

  27. Bellamy LJ (1975) The infrared spectra of complex molecules, 3rd edn. Chapman and Hall, London

    Book  Google Scholar 

  28. Hannappel T, Burfeindt B, Storck W, Willig F (1997) J Phys Chem B 101:6799–6802

    Article  CAS  Google Scholar 

  29. Davidson G, Mann BE, Dillon KB, Davids G (2003) In: Davidson G (ed) Spectroscopic properties in inorganic and organometallic compounds, vol 36. Royal Society of Chemistry, London, pp 269–276

    Chapter  Google Scholar 

  30. Rana A, Dinda R, Sengupta P, Ghosh S, Falvello LR (2002) Polyhedron 21:1023–1030

    Article  CAS  Google Scholar 

  31. Günyar A, Zhou MD, Drees M, Baxter PNW, Bassioni G, Herdtwecka E, Kühn FE (2009) Dalton Trans 8746–8754

  32. Yu JG, Ma TT, Liu SW (2011) Phys Chem Chem Phys 13:3491–3501

    Article  CAS  Google Scholar 

  33. Purohit S, Koley AP, Ghosh S (1990) Polyhedron 9:881–890

    Article  CAS  Google Scholar 

  34. Bustos C, Burckhardt O, Schrebler R, Carrillo D, Arif AM, Cowley AH, Nunn CM (1990) Inorg Chem 29:3996–4001

    Article  CAS  Google Scholar 

  35. Holm RH (1990) Coord Chem Rev 100:121–183

    Article  Google Scholar 

  36. Parker JC, Siegel RW (1990) Appl Phys Lett 57:943–945

    Article  CAS  Google Scholar 

  37. Kelly S, Pollak FH, Tomkiewicz M (1997) J Phys Chem B 101:2730–2734

    Article  CAS  Google Scholar 

  38. Hearne GR, Zhao J, Dawe AM, Pischedda V, Maaza M, Nieuwoudt MK, Kibasomba P, Nemraoui O, Comins JD, Witcomb MJ (2004) Phys Rev B 70:134102

    Article  Google Scholar 

  39. Zhang R, Pan J, Briggs EP, Thrash M, Kerr LL (2008) Sol Energy Mater Sol Cells 92:425–431

    Article  CAS  Google Scholar 

  40. Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Nanotechnology 19:235602–235608

    Article  CAS  Google Scholar 

  41. Christodoulakis A, Boghosian S (2008) J Catal 260:178–187

    Article  CAS  Google Scholar 

  42. Debecker DP, Schimmoeller B, Stoyanova M, Poleunis C, Bertrand P, Rodemerck U, Gaigneaux EM (2011) J Catal 277:154–163

    Article  CAS  Google Scholar 

  43. Ren WS, Fu XK, Bao HB, Bai RF, Ding PP, Sui BL (2009) Catal Commun 10:788–793

    Article  CAS  Google Scholar 

  44. Gong BW, Fu XK, Chen JX, Li YD, Zou XC, Tu XB, Ding PP, Ma LP (2009) J Catal 262:9–17

    Article  CAS  Google Scholar 

  45. Liang JJ, Liu TJ (1986) J Chin Chem Soc 33:133–137

    CAS  Google Scholar 

  46. Arzoumanian H, Agrifoglio G, Kreintzien H Capparelli M (1995) J Chem Soc Chem Commun 655–656

  47. Arzoumanian H, Maurino L, Agrifoglio G (1997) J Mol Catal A: Chem 117:471–478

    Article  CAS  Google Scholar 

  48. Arzoumanian H (1998) Coord Chem Rev 178–180:191–202

    Article  Google Scholar 

  49. Arzoumanian H (2011) Current Inorg Chem 1:140–145

    Article  CAS  Google Scholar 

  50. Bakhtchadjian R, Tsarukyan S, Barrault J, Martinez F, Tavadyan L, Castellanos NJ (2011) Transition Met Chem 36:897–900

    Article  CAS  Google Scholar 

  51. Castellanos NJ, Martínez F, Páez-Mozo EA, Ziarelli F, Arzoumanian H (2012) Transition Met Chem 37:629–637

    Article  CAS  Google Scholar 

  52. Purohit S, Koley AP, Prasad LS, Manoharan PT, Ghosh S (1989) Inorg Chem 28:3735–3742

    Article  CAS  Google Scholar 

  53. Dinda R, Sengupta P, Ghosh S, Figge HM, Sheldrick WS (2002) J Chem Soc Dalton Trans 4434–4439

  54. Dinda R, Sengupta P, Ghosh S, Sheldrick WS (2003) Eur J Inorg Chem 363–369

  55. Rana A, Dinda R, Ghosh S, Blake A (2003) Polyhedron 22:3075–3082

    Article  CAS  Google Scholar 

  56. Shiraishi Y, Saito N, Hirai T (2005) J Am Chem Soc 37:12820–12822

    Article  Google Scholar 

  57. Leofantia G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207–219

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was performed under the auspices of a COOPEN program funded by the European Community. N.J.C. is grateful to COLCIENCIAS “Fondo de Apoyo a los Doctorados Nacionales.” The Raman instrument is funded by the Ghent University, GOA grant Nr. 01G00710.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nelson J. Castellanos or Henri Arzoumanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, N.J., Martínez, F., Lynen, F. et al. Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania. Transition Met Chem 38, 119–127 (2013). https://doi.org/10.1007/s11243-012-9668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9668-2

Keywords

Navigation