Skip to main content
Log in

Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Bis(3,5-dimethylpyrazol-1-yl)acetate, well known as a tridentate N,N,O ligand, was bound to MoO2Cl2 in a bidentate N,N manner by anchoring covalently, at first, the ligand onto a titanium oxide surface, followed by its complexation with the molybdenum dioxo entity. It was fully characterized by 13CPMAS NMR and FT-IR spectroscopy. The tethered complex was directly compared with an analogous bipyridyl species in the catalytic ethylbenzene oxidation by O2 at room temperature, atmospheric pressure, and under visible light. The bis(pyrazol-1-yl) catalyst exhibited a significant initial higher oxygen atom transfer (OAT) capability, well in accord with its electron donating property. It was, unfortunately, hampered by a premature leaching phenomenon, totally absent in the comparable bipyridyl system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reedijk J (1987) Comprehensive coordination chemistry. Pergamon Press, Oxford

    Google Scholar 

  2. Constable EC, Steel PJ (1989) Coord Chem Rev 93:205–223

    Article  CAS  Google Scholar 

  3. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1203

    Article  CAS  Google Scholar 

  4. Holm RH (1990) Coord Chem Rev 100:183–221

    Article  CAS  Google Scholar 

  5. Arzoumanian H (1998) Coord Chem Rev 178–180:191–202

    Article  Google Scholar 

  6. Bakhtchadjian R, Tsarukyan S, Barrault J, Martinez F, Tavadyan L, Castellanos NJ (2011) Transition Met Chem 36:897–900

    Article  CAS  Google Scholar 

  7. Trofimenko S (1970) J Am Chem Soc 70:5118–5126

    Article  Google Scholar 

  8. Pettinari C, Pettinari R (2005) Coord Chem Rev 249:663–691

    Article  CAS  Google Scholar 

  9. Santos AM, Kûhn FE, Bruss-Jensen K, Lucas I, Romao CC, Herdtwech E (2001) J Chem Soc Dalton Trans 1332–1337

  10. Joshi VS, Nandi M, Zhang H, Haggerty BS, Sarkar A (1993) Inorg Chem 32:1301–1303

    Article  CAS  Google Scholar 

  11. Arzoumanian H (2011) Current Inorg Chem 1:140–145

    Article  CAS  Google Scholar 

  12. Arzoumanian H, López R, Agrifloglio G (1994) Inorg Chem 33:3177–3179

    Article  CAS  Google Scholar 

  13. Arzoumanian H, Agrifoglio G, Kreintzien H Capparelli M (1995) J Chem Soc Chem Commun 655–656

  14. Arzoumanian H, Agrifoglio G, Kreintzien H (1996) New J Chem 20:699–705

    CAS  Google Scholar 

  15. Arzoumanian H, Maurino L, Agrifoglio G (1997) J Mol Catal A: Chem 117:471–478

    Article  CAS  Google Scholar 

  16. Arzoumanian H, Bakhtchadjian R, Agrifoglio G, Atencio R, Briceno A (2006) Transition Metal Chem 31:681–689

    Article  CAS  Google Scholar 

  17. Arzoumanian H, Bakhtchadjian R, Atencio R, Briceno A, Verde G, Agrifoglio G (2006) J Mol Catal A: Chem 260:197–201

    Article  CAS  Google Scholar 

  18. Arzoumanian H, Bakhtchadjian R, Agrifoglio G, Atencio R, Briceno A (2008) Transition Metal Chem 33:941–951

    Article  CAS  Google Scholar 

  19. Arzoumanian H, Bakhtchadjian R, Agrifoglio G, Krentzien H, Daran JC (1999) Eur J Inorg Chem 1999(12):2255–2259

    Article  Google Scholar 

  20. Paez CA, Castellanos NJ, Martinez F, Ziarelli F, Agrifoglio G, Paez-Mozo EA, Arzoumanian H (2008) Catal Today 133–135:619–624

    Article  Google Scholar 

  21. Paez CA, Lozada O, Castellanos NJ, Martinez F, Ziarelli F, Agrifoglio G, Paez-Mozo EA, Arzoumanian H (2009) J Mol Catal A: Chem 299:53–59

    Article  CAS  Google Scholar 

  22. Arzoumanian H, Castellanos NJ, Martinez F, Paez-Mozo EA, Ziarelli F (2010) Eur J Inorg Chem 1633–1641

  23. Shiu KB, Lin ST, Fung DW, Chan TJ, Peng SM, Cheng MC, Chou JL (1995) Inorg Chem 34:854–863

    Article  CAS  Google Scholar 

  24. Trofimenko S (1986) Prog Inorg Chem 14:115–210

    Article  Google Scholar 

  25. Schaefer J, Stejskal EO (1976) J Am Chem Soc 98:1031–1032

    Article  CAS  Google Scholar 

  26. Peersen OB, Wu X, Kustanovich I, Smith SO (1993) J Magn Reson, Ser A 104:334–339

    Article  CAS  Google Scholar 

  27. Cook RL, Langford CH, Yamdagni R, Preston CM (1996) Anal Chem 68:3979–3986

    Article  CAS  Google Scholar 

  28. Beck A, Weibert B, Burzlaff N (2001) Eur J Inorg Chem 2001:521–527

    Article  Google Scholar 

  29. Hübner E, Haas T, Burzlaff N (2006) Eur J Inorg Chem 48(12):4989–4997

    Article  Google Scholar 

  30. Otero A, Fernandez-Baeza J, Tejeda J, Antinolo A, Carillo-Hermosilla F, Diez-Barra E, Lara-Sanchez A, Fernandez-Lopez M, Lanfranchi M, Pellinghelli MA (1999) J Chem Soc Dalton Trans 3537–3548

  31. Beck A, Barth A, Hubner E, Burzlaff N (2003) Inorg Chem 42:7182–7188

    Article  CAS  Google Scholar 

  32. Bellamy LJ (1975) The infrared spectra of complex molecules. Chapman and Hall, London

    Google Scholar 

  33. Davidson G, Mann BE, Davidson G, Mann BE, Dillon KB, Davids G (2003) Spectroscopic properties in inorganic and organometallic compounds. Royal Society Chem 36:269–276

    Google Scholar 

  34. Hammes BS, Chohan BS, Hoffman JT, Einwachter S, Carrano CJ (2004) Inorg Chem 43:7800–7806

    Article  CAS  Google Scholar 

  35. Cendric M, Vrdoljak V, Strukan N, Tepes P, Novak P, Brbot-Saranovic A, Giester G, Kamenar B (2002) Eur J Inorg Chem 2002(8):2128–2137

    Article  Google Scholar 

  36. Gupta S, Roy S, Mandal TN, Das K, Ray S, Butcher RJ, Kar SK (2010) J Chem Sci 122:239–245

    Article  CAS  Google Scholar 

  37. Amarante TR, Almeida F, Gago S, Gonçalves I, Pillinger M, Rodrigues AE, Abrantes M (2009) Molecules 14:3610–3620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was performed under the auspices of COLCIENCIAS (Fondo Apoyo a Doctorados Nacionales) and supported by the project DIEF UIS 5166 of the Universidad Industrial de Santander.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nelson J. Castellanos or Henri Arzoumanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, N.J., Martínez, F., Páez-Mozo, E.A. et al. Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2 . Transition Met Chem 37, 629–637 (2012). https://doi.org/10.1007/s11243-012-9631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9631-2

Keywords

Navigation