Skip to main content
Log in

Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars. It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for maximum transgenic production are required for each individual cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAP:

Benzyladenine

EGFP:

Enhanced green fluorescent protein

NAA:

Napthyleneacetic acid

YEP:

Yeast extract peptone

References

  • Ainsley PJ, Collins GG, Sedgley M (2001) Factors affecting Agrobacterium mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill). J Hort Sci Biotech 76:522–528

    CAS  Google Scholar 

  • Almeida WAB, Mourão Filho FAA, Pino LE, Boscariol RL, Rodriguez APM, Mendes BMJ (2003a) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164:203–211

    Article  CAS  Google Scholar 

  • Almeida WAB, Mourão Filho FAA, Mendes BMJ, Pavan A, Rodriguez APM (2003b) Agrobacterium mediated transformation of Citrus sinensis and C limonia epicotyl segments. Sci Agr 60:23–29

    Google Scholar 

  • Ananthakrishnan G, Orbovic V, Pasquali G, Calovic M, Grosser JW (2007) Transfer of citrus tristeza virus (CTV)-derived resistance candidate sequences to four grapefruit cultivars through Agrobacterium-mediated genetic transformation. In Vitro Cell Dev Biol Plant 43:593–601

    Article  CAS  Google Scholar 

  • Archilletti T, Lauri P, Damiano C (1995) Agrobacterium-mediated transformation of almond leaf pieces. Plant Cell Rep 14:267–272

    Article  CAS  Google Scholar 

  • Barbosa-Mendes JM, Mourao Filho FAA, Filho AB, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hort 122:109–115. doi:10.1016/j.scienta.2009.04.001

    Article  CAS  Google Scholar 

  • Barrett HC, Rhodes AM (1976) Numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    Article  PubMed  CAS  Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    Article  CAS  Google Scholar 

  • Bondt AD, Eggermont K, Druart P, De Vil MD, Goderis I, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    Article  Google Scholar 

  • Bondt AD, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87:6708–6712

    Article  PubMed  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (1998) Agrobacterium mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Corredoira E, San-José MC, Ballester A, Vieitez AM (2005) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hort 693:387–394

    Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) Determination of the T-DNA transfer and T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant–Microbe Interact 6:658–665

    Article  Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A Gray. Plant Cell Rep 21:333–340

    Article  Google Scholar 

  • Delmotte FM, Delay D, Cizeau J, Guerin B, Leple JC (1991) Agrobacterium vir-inducing activities of glycosylated acetosyringone, acetovanillone, syringaldehyde and syringic acid derivatives. Phytochemistry 30:3549–3552

    Article  CAS  Google Scholar 

  • Deng XX, Grosser JW, Gmitter FG (1992) Intergeneric somatic hybrid plants from protoplast fusion of Fortunella crassifolia “Meiwa” with Citrus sinensis cultivar “Valencia”. Sci Hortic 49:55–62

    Article  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    Article  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera Thompson Seedless via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Dye F, Berthelot K, Griffon B, Delay D, Delmotte FM (1997) Alkylsyringamides, new inducers of Agrobacterium tumefaciens virulence genes. Biochemie 79:3–6

    Article  CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Fatta Del-Basco S, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Biol Plant 36:450–455

    Article  CAS  Google Scholar 

  • Fortin C, Nester EW, Dion P (1992) Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. J Bacteriol 174:5676–5685

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2006) Agrobacterium virulence gene induction. In: Wang K (ed) Methods in molecular biology: Agrobacterium protocols, vol 44. Humana Press, Totowa, pp 77–84

    Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Peña L (1999) Green fluorescent protein as a valuable marker for efficient transformation and improved regeneration of recalcitrant woody plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Ghorbel R, Dominguez A, Navarro L, Peña L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20:1183–1189

    PubMed  Google Scholar 

  • Grosser JW, Gmitter F Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Grosser JW, Ollitrault P, Olivares-Fuster O (2000) Somatic hybridization in citrus: an effective tool to facilitate variety improvement. In Vitro Cell Dev Biol-Plant 36:434–449

    Article  Google Scholar 

  • Guo WW, Duan YX, Olivares-Fuster O, Wu ZC, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality related pectin methylesterase gene. Plant Cell Rep 24:482–486

    Article  PubMed  CAS  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. varitalica). Plant Cell Rep 19:994–999

    Article  CAS  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160:877–887

    Article  PubMed  CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ (2004) Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Trans Res 13:143−154

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol-Plant 42:220–227

    Article  CAS  Google Scholar 

  • Luth D, Moore G (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org 57:219–222

    Article  CAS  Google Scholar 

  • Mendes BMJ, Boscariol RL, Mourão Filho FAA, Almeida WAB (2002) Agrobacterium-mediated genetic transformation of ‘Hamlin’ sweet orange. Pesq Agropec Bras 37:955–961

    Article  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Molinari HBC, Bespalhok JC, Kobayashi AK, Pereira LFP, Vieira GE (2004) Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo (Citrus paradisi Macf × Poncirus trifoliata L. Raf) using thin epicotyl sections. Scientia Hort 99:379–385

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001) Transgenic tea (Camellia sinensis (L.) O Kuntze cv Kangra Jat) plants obtained by Agrobacterium mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Moore GA, Jacona CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Morris JW, Morris RO (1990) Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii. Proc Natl Acad Sci USA 87:3614–3618

    Article  PubMed  CAS  Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, de Bondt A (1996) Efficient Agrobacterium mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muskens MW, Vissers AP, Mol JN, Kooter JN (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260

    Article  PubMed  CAS  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Niedz RP, McKendree WL, Shatters RG (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cell Dev Biol Plant 39:586–594

    Article  CAS  Google Scholar 

  • Olivares-Fuster O, Asins MJ, Duran-Vila N, Navarro L (2000) Cryopreserved callus, a source of protoplasts for citrus improvement. J Hort Sci Biotech 75:635–640

    Google Scholar 

  • Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation or single plasmid transformation. J Hort Sci Biotech 82:914–923

    CAS  Google Scholar 

  • Orbović V, Grosser JW (2006) Citrus: sweet orange (Citrus sinensis L. Osbeck ‘Valencia’) and Carrizo citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf.]. In Wang K (ed) Agrobacterium protocols—Methods in Molecular Biology. Humana, Inc., Totowa, NJ, pp 177–189

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Article  Google Scholar 

  • Peña L, Cervera M, Fagoaga C, Pérez R, Romero J, Juárez J, Pina JA, Navarro L (2004) Agrobacterium-mediated transformation of citrus. In: Curtis IS (ed) Transgenic crops of the world-essential protocols. Kluwer, Dordrecht, pp 145–157

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Yasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  Google Scholar 

  • Scora RW, Malik MN (1970) Chemical characterization of citrus as a tool in phylogeny. Taxon 19:215–228

    Article  Google Scholar 

  • Song KJ, Jin SB, Riu KZ (2007) Agrobacterium-mediated transformation of embryogenic cultures in ‘Miyagawa Wase’ satsuma mandarin (Citrus unshiu marc). Acta Hort 738:265–271

    Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Nester EW, Zambryski P (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83:379–383

    Article  PubMed  CAS  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar ‘Rio Red’ (Citrus paradisi Macf). Plant Cell Rep 19:1203–1211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Grosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutt, M., Grosser, J.W. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tiss Organ Cult 98, 331–340 (2009). https://doi.org/10.1007/s11240-009-9567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9567-1

Keywords

Navigation