Skip to main content

Advertisement

Log in

Hydroxyl radical reactions with 2-chlorophenol as a model for oxidation in supercritical water

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To determine the detailed mechanism of 2-chlorophenol (2-CP) oxidation in supercritical water, both the experiments and theoretical calculations were conducted in this paper. A set of experiments was performed to oxidize 2-CP in supercritical water under temperatures of 380–420 °C, pressure of 25 MPa, residence times of 0–60 s, and H2O2 as oxidant. By determining the molar yields of products, the primary single-ring products were identified as chlorohydroquinone, 2,4-dichlorophenol (2,4-DCP), 2,6-DCP, and 4-CP. The trends for the molar yields of the four products were analyzed at various temperatures and residence times. And built upon the trends, the possible reaction pathways were conjectured. Subsequently, the reaction mechanism was further verified by theoretical calculations, in which density functional theory was adopted as the computational method. The calculated results have well illustrated the experimental results and ascertained the reaction paths we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.M. Armenante, D. Kafkewitz, G.A. Lewandowski, C.J. Jou, Anaerobic–aerobic treatment of halogenated phenolic compounds. Water Res. 33, 681–692 (1999)

    Article  CAS  Google Scholar 

  2. U.G. Ahlborg, T.M. Thunberg, H.C. Spencer, Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. CRC Crit. Rev. Toxicol. 7, 1–35 (1980)

    Article  CAS  Google Scholar 

  3. L. Keith, Compilation of Sampling Analysis Methods (US Environmental Protection Agency, Boca Raton, 1991), pp. 389–486

    Google Scholar 

  4. M.A. Callahan et al., Water-Related Environmental Fate of 129 Priority Pollutants (Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency, Washington, DC, 1979)

    Google Scholar 

  5. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011)

    Google Scholar 

  6. D. Sun, H. Zhang, Electrochemical determination of 2-chlorophenol using an acetylene black film modified glassy carbon electrode. Water Res. 40, 3069–3074 (2006)

    Article  CAS  Google Scholar 

  7. J.D. Rodgers, W. Jedral, N.J. Bunce, Electrochemical oxidation of chlorinated phenols. Environ. Sci. Technol. 33, 1453–1457 (1999)

    Article  CAS  Google Scholar 

  8. A.M. Polcaro, S. Palmas, Electrochemical oxidation of chlorophenols. Ind. Eng. Chem. Res. 36, 1791–1798 (1997)

    Article  CAS  Google Scholar 

  9. J. Yang, J. Dai, C. Chen, J. Zhao, Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. J. Photochem. Photobiol. A 208, 66–77 (2009)

    Article  CAS  Google Scholar 

  10. N. Rao, A. Dubey, S. Mohanty, P. Khare, R. Jain, S. Kaul, Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability. J. Hazard. Mater. 101, 301–314 (2003)

    Article  CAS  Google Scholar 

  11. M. Czaplicka, Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater. 134, 45–59 (2006)

    Article  CAS  Google Scholar 

  12. Y. Cheng, H. Sun, W. Jin, N. Xu, Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chem. Eng. J. 128, 127–133 (2007)

    Article  CAS  Google Scholar 

  13. M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J. Hazard. Mater. 190, 993–1000 (2011)

    Google Scholar 

  14. R. Li, P.E. Savage, D. Szmukler, 2-Chlorophenol oxidation in supercritical water: global kinetics and reaction products. AlChE J. 39, 178–187 (1993)

    Article  CAS  Google Scholar 

  15. G. Lee, T. Nunoura, Y. Matsumura, K. Yamamoto, Effects of a sodium hydroxide addition on the decomposition of 2-chlorophenol in supercritical water. Ind. Eng. Chem. Res. 41, 5427–5431 (2002)

    Article  CAS  Google Scholar 

  16. Z. Sun, F. Takahashi, Y. Odaka, K. Fukushi, Y. Oshima, K. Yamamoto, Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water. Chemosphere 66, 151–157 (2007)

    Article  CAS  Google Scholar 

  17. H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation. Korean J. Chem. Eng. 22, 882–888 (2005)

    Article  CAS  Google Scholar 

  18. P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, Reactions at supercritical conditions: applications and fundamentals. AlChE J. 41, 1723–1778 (1995)

    Article  CAS  Google Scholar 

  19. W.R. Killilea, K. Swallow, G.T. Hong, The fate of nitrogen in supercritical-water oxidation. J. Supercrit. Fluids 5, 72–78 (1992)

    Article  CAS  Google Scholar 

  20. T.J. Park, J.S. Lim, Y.W. Lee, S.H. Kim, Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process. J. Supercrit. Fluids 26, 201–213 (2003)

    Article  CAS  Google Scholar 

  21. H. Pińkowska, P. Wolak, A. Złocińska, Hydrothermal decomposition of alkali lignin in sub- and supercritical water. Chem. Eng. J. 187, 410–414 (2012)

    Article  Google Scholar 

  22. M. Goto, T. Nada, A. Ogata, A. Kodama, T. Hirose, Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses. J. Supercrit. Fluids 13, 277–282 (1998)

    Article  CAS  Google Scholar 

  23. P.E. Savage, Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–622 (1999)

    Google Scholar 

  24. T.D. Thornton, P.E. Savage, Phenol oxidation pathways in supercritical water. Ind. Eng. Chem. Res. 31, 2451–2456 (1992)

    Article  CAS  Google Scholar 

  25. V. Marulanda, G. Bolaños, Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: laboratory-scale data and economic assessment. J. Supercrit. Fluids 54, 258–265 (2010)

    Article  CAS  Google Scholar 

  26. G. Anitescu, L.L. Tavlarides, Oxidation of Aroclor 1248 in supercritical water: a global kinetic study. Ind. Eng. Chem. Res. 39, 583–591 (2000)

    Article  CAS  Google Scholar 

  27. Q. Guan, C. Wei, X.-S. Chai, Pathways and kinetics of partial oxidation of phenol in supercritical water. Chem. Eng. J. 175, 201–206 (2011)

    Article  CAS  Google Scholar 

  28. X. Quan, H. Shi, J. Wang, Y. Qian, Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. Chemosphere 50, 1069–1074 (2003)

    Article  CAS  Google Scholar 

  29. W.Z. Tang, C. Huang, Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Res. 29, 745–756 (1995)

    Article  CAS  Google Scholar 

  30. P. Boule, C. Guyon, J. Lemaire, Photochemistry and environment IV—photochemical behaviour of monochlorophenols in dilute aqueous solution. Chemosphere 11, 1179–1188 (1982)

    Article  CAS  Google Scholar 

  31. N. Akai, S. Kudoh, M. Takayanagi, M. Nakata, Photoreaction mechanisms of 2-chlorophenol and its multiple chloro-substituted derivatives studied by low-temperature matrix-isolation infrared spectroscopy and density-functional-theory calculations. J. Photochem. Photobiol. A 146, 49–57 (2001)

    Article  CAS  Google Scholar 

  32. C. Wei, D. Li, H. Shi, Q. Guan, Y. Hu, Dechlorination kinetics and mechanism of p-chlorophenol in supercritical water. Zhongguo Keji Lunwen Zaixian/Sci. Pap. Online 5, 441–447 (2010)

    CAS  Google Scholar 

  33. G. Lee, T. Nunoura, Y. Matsumura, K. Yamamoto, Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. J. Supercrit. Fluids 24, 239–250 (2002)

    Article  CAS  Google Scholar 

  34. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr., T. Vreven, K. Kudin, J. Burant, Gaussian 03, Revision D. 01 (Gaussian, Wallingford, 2004)

    Google Scholar 

  35. Y. Zhao, D. Truhlar, Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 108, 6908–6918 (2004)

    Article  CAS  Google Scholar 

  36. K. Fukui, The path of chemical reactions—the IRC approach. Acc. Chem. Res. 14, 363–368 (1981)

    Article  CAS  Google Scholar 

  37. S.F. Rice, T.B. Hunter, Å.C. Rydén, R.G. Hanush, Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde. Ind. Eng. Chem. Res. 35, 2161–2171 (1996)

    Article  CAS  Google Scholar 

  38. E. Croiset, S.F. Rice, Direct observation of H2O2 during alcohol oxidation by O2 in supercritical water. Ind. Eng. Chem. Res. 37, 1755–1760 (1998)

    Article  CAS  Google Scholar 

  39. E. Croiset, S.F. Rice, R.G. Hanush, Hydrogen peroxide decomposition in supercritical water. AlChE J. 43, 2343–2352 (1997)

    Article  CAS  Google Scholar 

  40. K.S. Lin, H.P. Wang, Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environ. Sci. Technol. 34, 4849–4854 (2000)

    Article  CAS  Google Scholar 

  41. D. Shchukin, S. Poznyak, A. Kulak, P. Pichat, TiO2–In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water. J. Photochem. Photobiol. A 162, 423–430 (2004)

    Article  CAS  Google Scholar 

  42. M. Bertelli, E. Selli, Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. J. Hazard. Mater. 138, 46–52 (2006)

    Article  CAS  Google Scholar 

  43. Z. Han, D. Zhang, Y. Sun, C. Liu, Reexamination of the reaction of 4-chlorophenol with hydroxyl radical. Chem. Phys. Lett. 474, 62–66 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National High Technology Research and Development Program of China (863 Program, the Project No. 2007AA05Z235). We acknowledge the research foundation of Shandong Environmental Protection Bureau for support. We also thank the independent innovation project for the University Institutes of Jinan Technology Bureau (No. 201 102 046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Ma, C., Sun, Y. et al. Hydroxyl radical reactions with 2-chlorophenol as a model for oxidation in supercritical water. Res Chem Intermed 40, 973–990 (2014). https://doi.org/10.1007/s11164-012-1015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-1015-x

Keywords

Navigation