Skip to main content
Log in

Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Concentrations of both inorganic and organic blood plasma/serum components of teleost fishes were reviewed in seven habitat/life-history categories. These were: freshwater; inland saline; estuarine and nearshore marine; pelagic and deep-sea; diadromous; southern cold-water; and northern cold-water. Plasma/serum osmolalities were compared among groups acclimated to/living in fresh and in salt water. Contributions of inorganic ions and colligative and non-colligative organic molecules were evaluated including with respect to melting and freezing points, and “antifreeze activity” of plasma/serum in species from cold marine waters. Possible roles of TMAO in deep-water fishes were reviewed. Discussion also included influences of ambient salinity and temperature on concentrations of plasma/serum components. Seasonal cycles of blood plasma/serum components were discussed, along with antifreeze concentrations in other body fluids and tissues of cold-water fishes. Regulatory patterns of plasma/serum osmolalities were compared among the most euryhaline of teleosts evaluated here. Highest mean values of plasma/serum osmolalities in sea water were seen in southern cold-water and in pelagic and deep-sea fishes. The southern cold-water group also had the lowest plasma/serum freezing points among these groups. Comparisons of mean plasma/serum Na+ and Cl concentrations among fishes from fresh waters did not differ significantly among groups, but species from cold marine waters showed higher levels than did other groups in marine waters. Plasma/serum osmotic, Na+ and Cl concentrations of these seven groups of teleosts were compared with those of other fish-like vertebrate groups. Possible impacts of global warming on regulatory responses of plasma/serum components were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aas-Hansen Ø, Vijayan MM, Johansen HK, Cameron C, Jørgensen EH (2005) Resmoltification in wild, anadromous Arctic char (Salvelinus alpinus): a survey of osmoregulatory, metabolic, and endocrine changes preceding annual seawater migration. Can J Fish Aquat Sci 62:195–204

    Article  CAS  Google Scholar 

  • Abacus Concepts Inc (1991) SuperANOVA, Version 1.11. Berkeley, CA

    Google Scholar 

  • Ahokas RA, Duerr FG (1975) Salinity tolerance and extracellular osmoregulation in two species of euryhaline teleosts, Culaea inconstans and Fundulus diaphanus. Comp Biochem Physiol 52A:445–448

    Article  Google Scholar 

  • Alexis MN, Papapraskeva-Papoutsoglou E, Papoutsoglou S (1984) Influence of acclimation temperature on the osmotic regulation and survival of rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. Aquaculture 40:333–341

    Article  Google Scholar 

  • Allanson BR, Bok A, Van Wyk NI (1971) The influence of exposure to low temperature on Tilapia mossambica Peters (Cichlidae). J Fish Biol 3:181–185

    Article  CAS  Google Scholar 

  • Altinok I, Galli SM, Chapman FA (1998) Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. Comp Biochem Physiol 120A:609–616

    CAS  Google Scholar 

  • Angel MV (1997) What is the deep sea? In: Randall DJ, Farrell AP (eds) Deep-sea fishes, fish physiology, vol 16. Academic Press, San Diego, pp 43–77

    Chapter  Google Scholar 

  • Arnesen AM, Halvorsen M, Nilssen KJ (1992) Development of hypoosmoregulatory capacity in arctic charr (Salvelinus alpinus) reared under either continuous light or natural photoperiod. Can J Fish Aquat Sci 49:229–237

    Article  Google Scholar 

  • Arnesen AM, Lysfjord G, Damsgård B (1995) Smolt characteristics of small first-time migrants, and resident Arctic charr, Salvelinus alpinus (L.), from a river system in northern Norway. Aquacult Res 26:809–818

    Article  Google Scholar 

  • Arnesen AM, Johnsen HK, Mortensen A, Jobling M (1998) Acclimation of Atlantic salmon (Salmo salar L.) smolts to ‘cold’ sea water following direct transfer from fresh water. Aquaculture 168:351–367

    Article  CAS  Google Scholar 

  • Arnold-Reed DE, Balment RJ (1991) Salinity tolerance and its seasonal variation in the flounder, Platichthys flesus. Comp Biochem Physiol 99A:145–149

    Article  Google Scholar 

  • Audet C, Claireaux G (1992) Diel and seasonal changes in resting levels of various blood parameters in brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 49:870–877

    Article  Google Scholar 

  • Audet C, Besner M, Munro J, Dutil J-D (1993) Seasonal and diel variations of various blood parameters in Atlantic cod (Gadus morhua) and American plaice (Hippoglossoides platessoides). Can J Zool 71:611–618

    Article  Google Scholar 

  • Backus RH (1951) New and rare records of fishes from Labrador. Copeia 1951:288–294

    Article  Google Scholar 

  • Barton M (1979) Serum osmoregulation in two species of estuarine blennoid fish, Anoplarchus purpurescens and Pholis ornata. Comp Biochem Physiol 64A:305–307

    Article  Google Scholar 

  • Bayly IAE (1969) Introductory comments, symposium on salt and brackish inland waters. Verh Int Ver Theor Angew Limnol 17:419–420

    Google Scholar 

  • Bayly IAE (1972) Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann Rev Ecol Syst 3:233–268

    Article  Google Scholar 

  • Bayly IAE, Williams WD (1966) Chemical and biological studies on some saline lakes of south-east Australia. Aust J Mar Freshwat Res 17:177–228

    Article  CAS  Google Scholar 

  • Bayly IAE, Williams WD (1975) Inland waters and their ecology. Longman, Hawthorn

    Google Scholar 

  • Beadle LC (1943) Osmotic regulation and the faunas of inland waters. Biol Rev 18:172–183

    Article  Google Scholar 

  • Beadle LC (1957) Comparative physiology: osmotic and ionic regulation in aquatic animals. Annu Rev Physiol 19:329–358

    Article  CAS  PubMed  Google Scholar 

  • Beadle LC (1969) Osmotic regulation and the adaptation of freshwater animals to inland saline waters. Verh Int Ver Theor Angew Limnol 17:421–429

    Google Scholar 

  • Beadle LC (1974) The inland waters of tropical Africa. Longman Inc., New York

    Google Scholar 

  • Beamish FWH, Strachan PD, Thomas E (1978) Osmotic and ionic performance of the anadromous sea lamprey, Petromyzon marinus. Comp Biochem Physiol 60A:435–443

    Article  Google Scholar 

  • Becker EL, Bird R, Kelly JW, Schilling J, Solomon S, Young N (1958) Physiology of marine teleosts, I. Ionic composition of tissue. Physiol Zool 31:224–227

    CAS  Google Scholar 

  • Bellamy D, Chester Jones I (1961) Studies on Myxine glutinosa-I. The chemical composition of the tissues. Comp Biochem Physiol 3:175–183

    Article  CAS  PubMed  Google Scholar 

  • Bendall B, Moore A, Quayle V (2005) The post-spawning movement of migratory brown trout Salmo trutta L. J Fish Biol 67:809–822

    Article  Google Scholar 

  • Blaber SJM (1974) Osmoregulation in juvenile Rhabdosargus holubi (Steindachner) (Teleostei: Sparidae). J Fish Biol 6:797–800

    Article  Google Scholar 

  • Black VS (1951) II. Osmotic regulation in teleost fishes. In: Hoar WS, Black VS, Black EC (eds) Some aspects of the physiology of fish. Univ Toronto Biol Ser No. 59, pp 53–89

  • Black VS (1957) Excretion and osmoregulation. In: Brown ME (ed) The physiology of fishes, vol 1. Academic Press, New York, pp 163–205

    Google Scholar 

  • Blaxter JHS, Wardle CS, Roberts BL (1971) Aspects of the circulatory physiology and muscle systems of deep-sea fish. J Mar Biol Assoc UK 51:991–1006

    Article  Google Scholar 

  • Bolin B, Döös BR, Jäger J, Warrick RJ (eds) (1986) The greenhouse effect, climate change, and ecosystems. Scientific committee on problems of the environment (SCOPE) 29. Wiley, New York

    Google Scholar 

  • Bond RM, Cary MK, Hutchinson GE (1932) A note on the blood of the hag-fish Polistotrema stouti (Lockington). J Exp Biol 9:12–14

    Google Scholar 

  • Boula D, Castric V, Bernatchez L, Audet C (2002) Physiological, endocrine, and genetic bases of anadromy in the brook charr, Salvelinus fontinalis, of the Laval River (Québec, Canada). Environ Biol Fishes 64:229–242

    Article  Google Scholar 

  • Breder CM Jr, Rosen DE (1966) Modes of reproduction in fishes. The Natural History Press, Garden City

    Google Scholar 

  • Burton RF (1986a) Internal reference standards in ionic regulation and the predictability of ionic concentrations in animals. Comp Biochem Physiol 83A:607–611

    Article  CAS  Google Scholar 

  • Burton RF (1986b) Ionic regulation in fish: the influence of acclimation temperature on plasma composition and apparent set points. Comp Biochem Physiol 85A:23–28

    Article  CAS  Google Scholar 

  • Butler DG, Youson JH (1988) Kidney function in the bowfin (Amia calva L.). Comp Biochem Physiol 89A:343–345

    Article  Google Scholar 

  • Butler DG, Clarke WC, Donaldson EM, Langford RW (1969) Surgical adrenalectomy of a teleost fish (Anguilla rostrata LeSueur); effect on plasma cortisol and tissue electrolyte and carbohydrate concentrations. Gen Comp Endocrinol 12:503–514

    Article  CAS  PubMed  Google Scholar 

  • Byrne JM, Beamish FWH, Saunders KL (1972) Influence of salinity, temperature and exercise on plasma osmolality and ionic concentration in Atlantic salmon (Salmo salar). J Fish Res Board Can 29:1217–1220

    CAS  Google Scholar 

  • Cameron JN (1980) Body fluid pools, kidney function, and acid-base regulation in the freshwater catfish Ictalurus punctatus. J Exp Biol 86:171–185

    Google Scholar 

  • Canfield DE, Maceina MJ, Nordlie FG, Shireman JV (1985) Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes. Trans Am Fish Soc 114:423–429

    Article  CAS  Google Scholar 

  • Carter HJ (1981) Aspects of the physiological ecology of species of Gambusia from Belize, Central America. Copeia 1981:694–700

    Article  Google Scholar 

  • Cataldi E, Ciccotti E, DiMarco P, DiSanto O, Bronzi P, Cataudella S (1995) Acclimation trials of juvenile Italian sturgeon to different salinities: morpho-physiological descriptors. J Fish Biol 47:609–618

    Article  Google Scholar 

  • Catlett RH, Millich DR (1976) Intracellular and extracellular osmoregulation of temperature acclimated goldfish: Carassius auratus L. Comp Biochem Physiol 55A:261–269

    Article  Google Scholar 

  • Chadwick EMP, Cairns DK, Dupuis HMC, Ewart KV, Kao MH, Fletcher GL (1990) Plasma antifreeze levels reflect the migratory behavior of Atlantic herring (Clupea harengus harengus) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci 47:1534–1536

    CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng CH-C (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822

    Article  CAS  PubMed  Google Scholar 

  • Cheng CC-M, DeVries AL (2002) Origins and evolution of fish antifreeze proteins. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub Co, Pte Ltd, Singapore, pp 83–105

    Google Scholar 

  • Chessman BC, Williams WD (1975) Salinity tolerance and osmoregulatory ability of Galaxias maculatus (Jenyns) (Pisces, Salmoniformes, Galaxiidae). Freshw Biol 5:135–140

    Article  Google Scholar 

  • Chew SF, Ip YK (1990) Differences in the responses of two mudskippers, Boleopthalmus beddaerti and Periopthalmus chrysospilos to changes in salinity. J Exp Zool 256:227–231

    Article  Google Scholar 

  • Christiansen JS, Chernitsky AG, Karamushko OV (1995) An Arctic teleost fish with a noticeably high body fluid osmolality: a note on the navaga, Eleginus navaga (Pallas 1811), from the White Sea. Polar Biol 15:303–306

    Google Scholar 

  • Claiborne JB, Walton JS, Compton-McCullough D (1994) Acid-base regulation, branchial transfers and renal output in a marine teleost fish (the longhorned sculpin Myoxocephalus octodecimspinosus) during exposure to low salinities. J Exp Biol 193:79–95

    CAS  PubMed  Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218

    Article  Google Scholar 

  • Clarke WC, Lundqvist H, Eriksson L-O (1985) Accelerated photoperiod advances seasonal cycle of seawater adaptation in juvenile Baltic salmon, Salmo salar L. J Fish Biol 26:29–35

    Article  Google Scholar 

  • Coe MJ (1966) The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta Trop 23:146–177

    Google Scholar 

  • Collette BB, Klein-MacPhee G (eds) (2002) Bigelow and Schroeder’s fishes of the Gulf of Maine, 3rd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • Conte FP, Wagner HH (1965) Development of osmotic and ionic regulation in juvenile steelhead trout Salmo gairdneri. Comp Biochem Physiol 14:603–620

    Article  CAS  PubMed  Google Scholar 

  • Crocker PA, Arnold CR, DeBoer JA, Holt GJ (1983) Blood osmolality shift in juvenile red drum, Sciaenops ocellatus L. exposed to fresh water. J Fish Biol 23:315–319

    Article  Google Scholar 

  • Davenport J, Sayer MDJ (1993) Physiological determinants of distribution in fish. J Fish Biol 43(Suppl A):121–145

    Google Scholar 

  • Davenport J, Vahl O (1979) Responses of the fish Blennius pholis to fluctuating salinities. Mar Ecol Prog Ser 1:101–107

    Article  Google Scholar 

  • Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7:828–834

    Article  CAS  PubMed  Google Scholar 

  • Davies PL, Hew CL, Fletcher GL (1988) Fish antifreeze proteins: physiology and evolutionary biology. Can J Zool 66:2611–2617

    Article  CAS  Google Scholar 

  • Davies PL, Ewart KV, Fletcher GL (1993) The diversity and distribution of fish antifreeze proteins: new insights into their origins. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 2. Elsevier, Amsterdam, pp 279–291

    Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B 357:927–935

    Article  CAS  Google Scholar 

  • Davis KB, Simco BA (1976) Salinity effects on plasma electrolytes of channel catfish, Ictalurus punctatus. J Fish Res Board Can 33:741–746

    CAS  Google Scholar 

  • Davson H, Grant CT (1960) Osmolarities of some body fluids in the elasmobranch and teleost. Biol Bull 119:293 (abstract)

    Google Scholar 

  • Dempson JB (1993) Salinity tolerance of freshwater acclimated, small-sized Arctic charr, Salvelinus alpinus from Northern Labrador. J Fish Biol 43:451–462

    Article  Google Scholar 

  • Deng G, Andrews DW, Laursen RA (1997) Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosus. FEBS Lett 402:17–20

    Article  CAS  PubMed  Google Scholar 

  • DeVlaming VL, Sage M (1973) Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp Biochem Physiol 45A:31–44

    Article  Google Scholar 

  • DeVries AL (1970) Freezing resistance in Antarctic fishes. In: Holdgate M (ed) Antarctic ecology, vol 1. Academic Press, New York, pp 320–328

    Google Scholar 

  • DeVries AL (1971a) Freezing resistance in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New York, pp 157–190

    Google Scholar 

  • DeVries AL (1971b) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL (1974) Survival at freezing temperatures. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol 1. Academic Press Inc Ltd, London, pp 289–330

    Google Scholar 

  • DeVries AL (1983) Antifreeze peptides and glycopeptides in cold-water fishes. Annu Rev Physiol 45:245–260

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Lin Y (1977) The role of glycoprotein antifreezes in the survival of Antarctic fishes. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf, Houston, pp 439–458

    Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Dobbs GH III, DeVries AL (1975) Renal function in Antarctic teleost fishes: serum and urine composition. Mar Biol 29:59–70

    Article  CAS  Google Scholar 

  • Dobbs GH III, Lin Y, DeVries AL (1974) Aglomerulism in Antarctic fish. Science 185:793–794

    Article  CAS  PubMed  Google Scholar 

  • Driedzic WR, Clow KA, Short CE, Ewart KV (2006) Glycerol production in rainbow smelt (Osmerus mordax) may be triggered by low temperature alone and is associated with the activation of glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. J Exp Biol 209:1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337

    Article  Google Scholar 

  • Duman JG, DeVries AL (1974a) Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature 247:237–238

    Article  CAS  Google Scholar 

  • Duman JG, DeVries AL (1974b) The effects of temperature and photoperiod on antifreeze production in cold water fishes. J Exp Zool 190:89–98

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, DeVries AL (1975) The role of macromolecular antifreezes in cold water fishes. Comp Biochem Physiol 52A:193–199

    Article  Google Scholar 

  • Duston J, Saunders RL (1990) The entrainment role of photoperiod on hypoosmoregulatory and growth-related aspects of smolting in Atlantic salmon (Salmo salar). Can J Zool 68:707–715

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT, DeVries AL, Coalson RE, Nordquist RE, Boyd RB (1979) Renal conservation of antifreeze peptide in Antarctic eelpout, Rhigophila dearborni. Nature 282:217–219

    Article  CAS  PubMed  Google Scholar 

  • Echelle AA, Echelle AF, Hill LG (1972) Interspecific interactions and limiting factors of abundance and distribution in the Red River pupfish, Cyprinodon rubrofluviatilis. Am Midl Nat 88:109–130

    Article  Google Scholar 

  • Eddy FB, Maloiy GMO (1984) Ionic content of body fluids and sodium efflux in Oreochromis alcalicus grahami, a fish living at temperatures above 30°C and in conditions of extreme alkalinity. Comp Biochem Physiol 78A:359–361

    Article  CAS  Google Scholar 

  • Elger E, Elger B, Hentschel H, Stolte H (1987) Adaptation of renal function to hypotonic medium in the winter flounder (Pseudopleuronectes americanus). J Comp Physiol B 157:21–30

    Article  CAS  PubMed  Google Scholar 

  • Eliassen RA, Johnsen HK, Mayer I, Jobling M (1998) Contrasts in osmoregulatory capacity of two Arctic charr, Salvelinus alpinus (L.), strains from Northern Norway. Aquaculture 168:255–269

    Article  CAS  Google Scholar 

  • Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370

    Google Scholar 

  • Engel DW, Hettler WF, Coston-Clements L, Hoss DE (1987) The effect of abrupt salinity changes on the osmoregulatory abilities of the Atlantic menhaden Brevoortia tyrannus. Comp Biochem Physiol 86A:723–727

    Article  CAS  Google Scholar 

  • Evans DH (1980) Osmotic and ionic regulation by freshwater and marine fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 93–121

    Google Scholar 

  • Evans RP, Fletcher GL (2005) Type I antifreeze proteins expressed in snailfish skin are identical to their plasma counterparts. FEBS J 272:5327–5336

    Article  CAS  PubMed  Google Scholar 

  • Ewart KV (2002) Fish antifreeze proteins: functions, molecular interactions and biological roles. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub. Co., River Edge, pp 61–81

    Google Scholar 

  • Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658

    Article  CAS  Google Scholar 

  • Ewart KV, Hew CL (eds) (2002) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub Co., River Edge

    Google Scholar 

  • Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283

    Article  CAS  PubMed  Google Scholar 

  • Ewart KV, Blanchard B, Johnson SC, Bailey WL, Martin-Robichaud DJ, Buzeta MF (2000) Freeze susceptibility in haddock (Melanogrammus aeglefinus). Aquaculture 188:91–101

    Article  Google Scholar 

  • Fable WA Jr, Williams TD, Arnold CR (1978) Description of reared eggs and young larvae of the spotted seatrout, Cynoscion nebulosus. Fish Bull 76:65–71

    Google Scholar 

  • Fänge R, Fugelli K (1962) Osmoregulation in chimaeroid fishes. Nature 196:689

    Article  Google Scholar 

  • Farmer GJ, Ritter JA, Ashfield D (1978) Seawater adaptation and parr-smolt transformation of juvenile Atlantic salmon, Salmo salar. J Fish Res Board Can 35:93–100

    Google Scholar 

  • Feldmeth CR, Waggoner JPIII (1972) Field measurements of tolerance to extreme hypersalinity in the California killifish, Fundulus parvipinnis. Copeia 1972:592–594

    Article  Google Scholar 

  • Ferraris RP, Almendras JM, Jazul AP (1988) Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture 70:145–157

    Article  Google Scholar 

  • Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T, Grau EG (2007) Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profile in the Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol 146A:252–264

    CAS  Google Scholar 

  • Finstad B, Nilsson KB, Arneson AM (1989) Seasonal changes in sea-water tolerance of Arctic charr (Salvelinus alpinus). J Comp Physiol 159B:371–378

    Google Scholar 

  • Fletcher GL (1977) Circannual cycles of blood plasma freezing point and Na+ and Cl concentrations in Newfoundland winter flounder (Pseudopleuronectes americanus): correlation with water temperature and photoperiod. Can J Zool 55:789–795

    Article  CAS  PubMed  Google Scholar 

  • Fletcher CR (1978) Osmotic and ionic regulation in the cod (Gadus callarias L.) I. Water balance. J Comp Physiol 124:149–155

    CAS  Google Scholar 

  • Fletcher GL (1981) Effects of temperature and photoperiod on the plasma freezing point depression, Cl concentration, and protein “antifreeze” in winter flounder. Can J Zool 59:193–201

    Article  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Joshi SB (1982a) Isolation and characterization of antifreeze glycoproteins from the frostfish, Microgadus tomcod. Can J Zool 60:348–355

    Article  CAS  Google Scholar 

  • Fletcher GL, Slaughter D, Hew CL (1982b) Seasonal changes in the plasma levels of glycoprotein antifreeze, Na+, Cl and glucose in Newfoundland Atlantic cod (Gadus morhua). Can J Zool 60:1851–1854

    Article  CAS  Google Scholar 

  • Fletcher GL, Kao MH, Haya K (1984) Seasonal and phenotypic variations in plasma protein antifreeze levels in a population of marine fish, sea raven, Hemitripterus americanus. Can J Fish Aquat Sci 41:819–824

    CAS  Google Scholar 

  • Fletcher GL, King MJ, Kao MH (1987) Low temperature regulation of antifreeze glycopeptide levels in Atlantic cod (Gadus morhua). Can J Zool 65:227–233

    Article  CAS  Google Scholar 

  • Fletcher GL, Kao MH, Dempson JB (1988) Lethal freezing temperatures of Arctic char and other salmonids in the presence of ice. Aquaculture 71:369–378

    Article  Google Scholar 

  • Fletcher GL, King MJ, Kao MH, Shears MA (1989) Antifreeze proteins in the urine of marine fish. Fish Physiol Biochem 6:121–127

    Article  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Fogaça RTH, Andrews MA, Godt RE (1990) Trimethylamine n-oxide (TMAO) protects skinned skeletal muscle fibers from the deleterious effects of increased ionic strength. Biophys J 57:546a

    Google Scholar 

  • Fontaine M, Koch H (1950) Les variations d’euryhalinité et d’osmorégulation chez les poissons. J Physiologie 42:287–318

    CAS  Google Scholar 

  • Fontaínhas-Fernandes A, Russell-Pinto F, Gomes E, Reis-Henriques MA, Coimbra J (2001) The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater. Fish Physiol Biochem 23:307–316

    Article  Google Scholar 

  • Froese R, Pauly D (eds) (2008) FishBase. World Wide Web electronic publication (www.fishbase.org, version, June 2008)

  • Furspan P, Prange HD, Greenwald L (1984) Energetics and osmoregulation in the catfish, Ictalurus nebulosus and I. punctatus. Comp Biochem Physiol 77A:773–778

    Article  Google Scholar 

  • Galloway TM (1933) Osmotic pressure and saline content of blood of Petromyzon fluviatilis. J Exp Biol 10:313–316

    CAS  Google Scholar 

  • Gaumet F, Boeuf G, Severe A, LeRoux A, Mayer-Gostan N (1995) Effects of salinity on the ionic balance and growth of juvenile turbot. J Fish Biol 47:865–876

    Article  Google Scholar 

  • Gauthier SY, Marshall CB, Fletcher GL, Davies PL (2005) Hyperactive antifreeze protein in flounder species. FEBS J 272:4439–4449

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CR, Williams JD (2002) Field guide to fishes, North America, rev edn. Alfred A. Knopf, New York

    Google Scholar 

  • Gillett MB, Suko JR, Santoso FO, Yancey PH (1997) Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J Exp Zool 279:386–391

    Article  CAS  Google Scholar 

  • Gilmore RG, Cooke DW, Donohoe CJ (1982) A comparison of the fish populations and habitat in open and closed salt marsh impoundments in east-central Florida. Northeast Gulf Sci 5:25–37

    Google Scholar 

  • Goddard SV, Kao MH, Fletcher GL (1992) Antifreeze production, freeze resistance, and overwintering of juvenile northern Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 49:516–522

    Article  Google Scholar 

  • Goldstein L, Palatt PJ (1974) Trimethylamine oxide excretion rates in elasmobranches. Am J Physiol 227:1268–1272

    CAS  PubMed  Google Scholar 

  • Gong Z, Fletcher GL, Hew CL (1992) Tissue distribution of fish antifreeze protein mRNAs. Can J Zool 70:810–814

    Article  CAS  Google Scholar 

  • Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL (1996) Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. J Biol Chem 271:4106–4112

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez RJ, McDonald DG (2000) Ionoregulatory responses to temperature change in two species of freshwater fish. Fish Physiol Biochem 22:311–317

    Article  CAS  Google Scholar 

  • Gonzalez-Cabrera PJ, Dowd F, Pedibhotla VK, Rosario R, Stanley-Samuelson D, Petzel D (1995) Enhanced hypo-osmoregulation induced by warm-acclimation in Antarctic fish is mediated by increased gill and kidney Na+/K+-ATPase activities. J Exp Biol 198:2279–2291

    CAS  PubMed  Google Scholar 

  • Gordon MS (1959a) Ionic regulation in the brown trout (Salmo trutta L.). J Exp Biol 36:227–252

    CAS  Google Scholar 

  • Gordon MS (1959b) Osmotic and ionic regulation in Scottish brown trout and sea trout (Salmo trutta L.). J Exp Biol 36:253–260

    CAS  Google Scholar 

  • Gordon MS, Amdur BH, Scholander PF (1962) Freezing resistance in some northern fishes. Biol Bull 122:52–62

    Article  Google Scholar 

  • Gordon MS, Boëtius J, Boëtius I, Evans DH, McCarthy R, Oglesby L (1965) Salinity adaptation in the mudskipper fish, Periophthalmus sobrinus. Hvalrådets Skrifter 48:85–93

    Google Scholar 

  • Gozlan RE, Pinder AC, Shelly J (2002) Occurrence of the Asiatic cyprinid Pseudorasbora parva in England. J Fish Biol 61:298–300

    Article  Google Scholar 

  • Grant FB, Pang PKT, Griffith RW (1969) The 24-hour seminal hydration response in goldfish (Carassius auratus). I. Sodium, potassium, calcium, magnesium, chloride and osmolality of serum and seminal fluid. Comp Biochem Physiol 30:273–280

    Article  CAS  PubMed  Google Scholar 

  • Grant BF, Mehrle PM, Russell TR (1970) Serum characteristics of spawning paddlefish (Polyodon spathula). Comp Biochem Physiol 37:321–330

    Article  CAS  Google Scholar 

  • Griffith RW (1974) Environment and salinity tolerance in the genus Fundulus. Copeia 1974:319–331

    Article  Google Scholar 

  • Griffith RW, Pang PKT (1979) Mechanisms of osmoregulation in the coelacanth: evolutionary implications. Occas Pap Calif Acad Sci 134:79–93

    Google Scholar 

  • Griffith RW, Pang PKT, Srivastava AR, Pickford GE (1973) Serum composition of freshwater stingrays (Potamotrygonidae) adapted to fresh and dilute sea water. Biol Bull 144:304–320

    Article  CAS  Google Scholar 

  • Griffith RW, Umminger BL, Grant BF, Pang PKT, Pickford GE (1974) Serum composition of the coelacanth, Latimeria chalumnae Smith. J Exp Zool 187:87–102

    Article  CAS  PubMed  Google Scholar 

  • Guynn S, Dowd F, Petzel D (2002) Characterization of gill Na/K-ATPase activity and ouabain binding in Antarctic and New Zealand nototheniid fishes. Comp Biochem Physiol 131A:363–374

    CAS  Google Scholar 

  • Haas R (1982) Notes on the ecology of Aphanius dispar (Pisces, Cyprinodontidae) in the Sultanate of Oman. Freshw Biol 12:89–95

    Article  Google Scholar 

  • Halvorsen M, Arnesen AM, Nilssen KM, Jobling M (1993) Osmoregulatory ability of anadromous Arctic charr, Salvelinus alpinus (L.), migrating toward the sea. Aquac Fish Manag 24:199–211

    Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world. Dr. W. Junk, Dordrecht

    Google Scholar 

  • Harden Jones FR, Scholes P (1974) The effect of low temperature on cod, Gadus morhua. J Cons Int Explor Mer 35:258–271

    Google Scholar 

  • Harding MM, Anderberg PI, Haymet ADJ (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Hardisty MW (1956) Some aspects of osmotic regulation in lampreys. J Exp Biol 33:431–447

    CAS  Google Scholar 

  • Hargens AR (1972) Freezing resistance in polar fishes. Science 176:184–186

    Article  PubMed  CAS  Google Scholar 

  • Hebard CE, Flick GJ, Martin RE (1982) Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. In: Martin RE, Flick GJ, Hebard CE, Ward DR (eds) Chemistry and biochemistry of marine food products. AVI, Westport, pp 149–304

    Google Scholar 

  • Hedgpeth JW (1959) Some preliminary considerations of the biology of inland mineral waters. Archivio di Oceanografia e Limnologia 11(Suppl):111–141

    Google Scholar 

  • Hegab SA, Hanke W (1982) Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stress. Comp Biochem Physiol 71A:157–164

    Article  Google Scholar 

  • Held JW, Peterka JJ (1974) Age, growth, and food habits of the fathead minnow, Pimephales promelas, in North Dakota saline lakes. Trans Am Fish Soc 103:743–756

    Article  CAS  Google Scholar 

  • Hew CL, Fletcher GL, Ananthanarayanan VS (1980) Antifreeze proteins from the shorthorn sculpin, Myoxocephalus scorpius: isolation and characterization. Can J Biochem 58:377–383

    CAS  PubMed  Google Scholar 

  • Hew CL, Slaughter D, Fletcher GL, Joshi SB (1981) Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool 59:2186–2191

    Article  CAS  Google Scholar 

  • Hickman CP Jr (1959) The osmoregulatory role of the thyroid gland in the starry flounder, Platichthys stellatus. Can J Zool 37:997–1060

    Article  Google Scholar 

  • Hickman CP Jr (1965) Studies on renal function in freshwater teleost fish. Trans R Soc Can 6:213–236

    Google Scholar 

  • Hoag H (2003) Atlantic cod meet icy death. Nature 422:792

    CAS  PubMed  Google Scholar 

  • Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6B. Academic Press, New York, pp 275–343

    Google Scholar 

  • Holligan PM, Reiners WA (1992) Predicting the responses of the coastal zone to global change. Adv Ecol Res 22:211–255

    Article  Google Scholar 

  • Holmes WN, Donaldson EM (1969) The body compartments and the distribution of electrolytes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 1. Academic Press, New York, pp 1–89

    Google Scholar 

  • Houston AH, Madden JA (1968) Environmental temperature and plasma electrolyte regulation in the carp Cyprinus carpio. Nature 217:969–970

    Article  CAS  Google Scholar 

  • Houston AH, Smeda JS (1979) Thermoacclimatory changes in the ionic microenvironment of haemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio). J Exp Biol 80:317–340

    CAS  PubMed  Google Scholar 

  • Hunt BM, Hoefling K, Cheng C-HC (2003) Annual warming episodes in seawater temperatures in McMurdo sound in relationship to endogenous ice in notothenioid fish. Antarctic Sci 15:333–338

    Article  Google Scholar 

  • Hwang PP, Sun CM, Wu SM (1989) Changes of plasma osmolality, chloride concentration, and gill Na+/K+ ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar Biol 100:295–299

    Article  Google Scholar 

  • Jackson AJ (1981) Osmotic regulation in rainbow trout (Salmo gairdneri) following transfer to sea water. Aquaculture 24:143–151

    Article  Google Scholar 

  • Jacob WF, Taylor MH (1983) The time course of seawater acclimation in Fundulus heteroclitus. J Exp Zool 228:33–39

    Article  CAS  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in gills of the European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300

    Article  CAS  PubMed  Google Scholar 

  • Jordan F, Haney DC, Nordlie FG (1993) Plasma osmotic regulation and routine metabolism in the Eustis pupfish, Cyprinodon variegatus hubbsi (Teleostei: Cyprinodontidae). Copeia 1993:784–789

    Article  Google Scholar 

  • Jørgensen EJ, Arnesen AM (2002) Seasonal changes in osmotic and ionic regulation in Arctic charr, Salvelinus alpinus, from a high- and a sub-arctic anadromous population. Environ Biol Fish 64:185–193

    Article  Google Scholar 

  • Kakuta I (1987) Comparison of osmotic regulation abilities among three Tridentiger species. Nippon Suisan Gakkaishi 53:941–945

    Google Scholar 

  • Kato A, Doi H, Nakada T, Sakai H, Hirose S (2005) Takifugu obscurus is a euryhaline species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC Physiol 5:18. doi:10.1186/1472-6793-5-18

    Article  PubMed  CAS  Google Scholar 

  • Katoh F, Hasegawa S, Kita J, Takagi Y, Kaneko T (2001) Distinct seawater and freshwater types of chloride cells in killifish, Fundulus heteroclitus. Can J Zool 79:822–829

    Article  Google Scholar 

  • Kelly RH, Yancey PH (1999) High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol Bull 196:18–25

    Article  CAS  Google Scholar 

  • Kelly SP, Chow INK, Woo NYS (1999) Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J Exp Zool 283:226–241

    Article  CAS  Google Scholar 

  • Kennedy VS (1990) Anticipated effects of climate change on estuarine and coastal fisheries. Fisheries 15:16–24

    Article  Google Scholar 

  • Keys A, Hill RM (1934) The osmotic pressure of the colloids in fish sera. J Exp Biol 11:28–33

    CAS  Google Scholar 

  • Kilby JD (1955) The fishes of two Gulf coastal marsh areas of Florida. Tulane Stud Zool 2:175–247

    Google Scholar 

  • Knox GA (2007) Biology of the southern ocean, 2nd edn. CRC, Taylor & Francis, Boca Raton

    Google Scholar 

  • Koch HJ, Heuts MJ (1943) Régulation osmotique, cycle sexuel et migration de reproduction chez les Épinoches. Arch Intern Physiol 53:253–266

    Article  Google Scholar 

  • Kolok AS, Sharkey D (1997) Effect of freshwater acclimation on the swimming performance and plasma osmolarity of the euryhaline Gulf killifish. Trans Am Fish Soc 126:866–870

    Article  Google Scholar 

  • Kornfield IL, Nevo E (1976) Likely pre-Suez occurrence of a Red Sea fish Aphanius dispar in the Mediterranean. Nature 264:289–291

    Article  Google Scholar 

  • Kostecki PT (1984) The effect of osmotic and ion-osmotic stresses on the blood and urine composition and urine flow of rainbow trout (Salmo gairdneri). Comp Biochem Physiol 79A:215–221

    Article  CAS  Google Scholar 

  • Krayushkina LS, Semenova OG, Panov AA, Gerasimov AA (1996) Functional traits of the osmoregulatory system of juvenile paddlefish Polyodon spathula (Polyodontidae). J Ichthyol 36:787–793

    Google Scholar 

  • Krayushkina AA, Gerasimov AA, Smirnov AV (2001) Hypoosmotic regulation in anadromous marine sturgeon, with special references to the structure and function of their kidneys and gill chloride cells. Doklady Biol Sci 378:210–212

    Article  CAS  Google Scholar 

  • Krogh A (1939) Osmotic regulation in aquatic animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Kubo T (1953) On the blood of salmonid fishes of Japan during migration. I. Freezing-point of the blood. Bull Fac Fish Hokkaido Univ 4:138–148

    Google Scholar 

  • Kubo T (1955) Changes of some characteristics of blood smolts of Oncorhynchus masou during seaward migration. Bull Fac Fish Hokkaido Univ 6:201–207

    Google Scholar 

  • Kucera CJ, Faulk CK, Holt GJ (2002) The effect of spawning salinity on eggs of spotted seatrout (Cynoscion nebulosus, Cuvier) from two bays with historically different salinity regimes. J Exp Mar Biol Ecol 272:147–158

    Article  Google Scholar 

  • Lahlou B, Henderson IW, Sawyer WH (1969) Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost, to dilute media. Am J Physiol 216:1266–1272

    CAS  PubMed  Google Scholar 

  • Lange R, Fugelli K (1965) The osmotic adjustment in the euryhaline teleosts, the flounder, Pleuronectes flesus L. and the three-spined stickleback, Gasterosteus aculeatus L. Comp Biochem Physiol 15:283–292

    Article  CAS  PubMed  Google Scholar 

  • Lasserre P, Gallis J-L (1975) Osmoregulation and differential penetration of two grey mullets, Chelon labrosus (Risso) and Lisa ramada (Risso) in estuarine fish ponds. Aquaculture 5:323–344

    Article  CAS  Google Scholar 

  • LeBreton G, Beamish W (1998) The influence of salinity on ionic concentration and osmolarity of blood serum in lake sturgeon, Acipenser fulvescens. Environ Biol Fish 52:477–482

    Article  Google Scholar 

  • Lee CL (1969) Salinity tolerance and osmoregulation of Taeniomembras microstomus (Gunther, 1861) (Pisces: Mugiliformes: Atherinidae) from Australian salt lakes. Aust J Mar Freshwat Res 20:157–162

    Article  Google Scholar 

  • LeFrançois NR, Lamarre SG, Blier PU (2004) Tolerance, growth and haloplasticity of the Atlantic wolfish (Anarchichas lupus) exposed to various salinities. Aquaculture 236:659–675

    Article  CAS  Google Scholar 

  • Leray C, Colin DA, Florentz A (1981) Time course of osmotic adaptation and gill energetics of rainbow trout (Salmo gairdneri R.) following abrupt changes in external salinity. J Comp Physiol 144:175–181

    Google Scholar 

  • Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax); seasonal pattern of glycerol and antifreeze protein levels of liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422

    Article  CAS  PubMed  Google Scholar 

  • Littlepage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctica. In: Llano GA (ed) Biology of the Antarctic Seas II. Antarctic research series, vol 5. American Geophysical Union, Publication No. 1297, Washington, pp 1–37

  • Loretz CA (1979) Osmotic and cell volume regulation in the goby, Gillichthys mirabilis. J Exp Zool 210:237–244

    Article  Google Scholar 

  • Lotan R (1960) Adaptability of Tilapia nilotica to various saline conditions. Bamidgeh 12:96–100

    Google Scholar 

  • Lotan R (1971) Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Z vergl Physiol 75:383–387

    Article  CAS  Google Scholar 

  • Low W-K, Lin Q, Ewart KV, Fletcher GL, Hew CL (2002) The skin-type antifreeze polypeptides: a new class of type I AFPs. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Publ Co Pte Ltd, Singapore, pp 161–186

    Google Scholar 

  • Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. J Fish Biol 67:752–766

    Article  Google Scholar 

  • Lutz PL (1972) Ionic and body compartment responses to increasing salinity in the perch Perca fluviatilis. Comp Biochem Physiol 42A:711–717

    Article  Google Scholar 

  • Lutz PL (1975) Osmotic and ionic composition of the polypteroid Erpetoichthys calabaris. Copeia 1975:119–123

    Article  Google Scholar 

  • Lutz PL, Robertson JD (1971) Osmotic constituents of the Coelacanth Latimeria chalumnae Smith. Biol Bull 141:553–560

    Article  CAS  Google Scholar 

  • Lysfjord G, Staurnes M (1998) Gill Na+, K+-ATPase activity and hypoosmoregulatory ability of seaward migrating smolts of anadromous Atlantic salmon (Salmo salar), sea trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in the Hals River, Northern Norway. Aquaculture 168:279–288

    Article  CAS  Google Scholar 

  • Maceina MJ, Nordlie FG, Shireman JV (1980) The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J Fish Biol 16:613–619

    Article  CAS  Google Scholar 

  • Macfarlane NAH (1974) Effect of hypophysectomy on osmoregulation in the euryhaline flounder Platichthyes flesus (L.) in seawater and fresh water. Comp Biochem Physiol 47A:201–217

    Article  Google Scholar 

  • Mackay WC (1974) Effect of temperature on osmotic and ionic regulation in goldfish, Carassius auratus. J Comp Physiol 88:1–19

    Article  CAS  Google Scholar 

  • Madsen SS, McCormick SD, Young G, Endersen JS, Nishioka RS, Bern HA (1994) Physiology of seawater acclimation in the striped bass, Morone saxatilis (Walbaum). Fish Physiol Biochem 13:1–11

    Article  CAS  Google Scholar 

  • Maetz J (1974) Aspects of adaptation to hypo-osmotic and hyper-osmotic environments. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol 1. Academic Press Inc Ltd, London, pp 1–167

    Google Scholar 

  • Maitland PS (2004) Keys to the freshwater fish of Britain and Ireland. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Mancera JM, Perez-Figares JM, Fernandez-Llebrez P (1993) Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol 196A:245–250

    Article  Google Scholar 

  • Maren TH, Rawls JA, Burger JW, Myers AC (1963) The alkaline (Marshall’s) gland of the skate. Comp Biochem Physiol 10:1–16

    Article  CAS  PubMed  Google Scholar 

  • Margaria R (1931) The osmotic changes in some marine animals. Proc R Soc Lond Ser B 107:606–624

    Article  CAS  Google Scholar 

  • Marshall WS, Emberley TR, Singer TD, Bryson SE, McCormick SD (1999) Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J Exp Biol 202:1535–1544

    PubMed  Google Scholar 

  • Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153

    Article  CAS  PubMed  Google Scholar 

  • Marshall CB, Chakrabartty A, Davies PL (2005) Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of α-helices. J Biol Chem 280:17920–17929

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ (1990) Osmoregulation in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries of Natal. S Afr J Zool 25:229–234

    Google Scholar 

  • Mathers JS, Beamish FWH (1974) Changes in serum osmotic and ionic concentrations in landlocked Petromyzon marinus. Comp Biochem Physiol 49A:677–688

    Article  Google Scholar 

  • McCormick SD, Naiman RJ (1984) Osmoregulation in the brook trout, Salvelinus fontinalis-II. Effects of size, age and photoperiod on seawater survival and ionic regulation. Comp Biochem Physiol 79A:17–28

    Article  CAS  Google Scholar 

  • McCormick SD, Shrimpton SM, Zydlewski JD (1997) Temperature effects on osmoregulatory physiology of juvenile anadromous fish. In: Wood CM, McDonald DG (eds) Global warming: implications for freshwater and marine fish. Society of experimental biology seminar series 61. Cambridge University Press, Cambridge, pp 279–307

    Google Scholar 

  • McCormick SD, Cunjak RA, Dempson B, O’Dea MF, Carey JB (1999) Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 56:1649–1658

    Article  Google Scholar 

  • McDonald MD, Grosell M (2006) Maintaining osmotic balance with an aglomerular kidney. Comp Biochem Physiol 143A:447–458

    CAS  Google Scholar 

  • McEnroe M, Cech JJ Jr (1985) Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fish 14:23–30

    Article  Google Scholar 

  • McFarland WN, Munz FW (1958) A re-examination of the osmotic properties of the Pacific hagfish, Polistotrema stouti. Biol Bull 114:348–356

    Article  CAS  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, Ithaca

    Google Scholar 

  • Melack JM (1983) Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105:223–230

    Article  Google Scholar 

  • Minckley CO, Klaassen HE (1969) Burying behavior of the plains killifish, Fundulus kansae. Copeia 1969:200–201

    Article  Google Scholar 

  • Morisawa M, Suzuki K, Morisawa S (1983) Effects of potassium and osmolality on spermatozoan motility of salmonid fishes. J Exp Biol 107:105–113

    CAS  PubMed  Google Scholar 

  • Morris R (1958) The mechanism of marine osmoregulation in the lampern (Lampetra fluviatilis L.) and the causes of its breakdown during the spawning migration. J Exp Biol 35:649–664

    CAS  Google Scholar 

  • Morris R (1965) Studies on salt and water balance in Myxine glutinosa (L.). J Exp Biol 42:359–371

    CAS  Google Scholar 

  • Munro J, Audet C, Besner M, Dutil J-D (1994) Physiological response of American plaice (Hippoglossoides platessoides) exposed to low salinity. Can J Fish Aquat Sci 51:2448–2456

    Article  CAS  Google Scholar 

  • Munz FW, McFarland WN (1964) Regulatory function of a primitive vertebrate kidney. Comp Biochem Physiol 13:381–400

    Article  CAS  PubMed  Google Scholar 

  • Murphy P, Houston AH (1977) Temperature, photoperiod and water-electrolyte balance in rainbow trout, Salmo gairdneri. Can J Zool 55:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Murray HM, Hew CL, Fletcher GL (2003) Spatial expression patterns of skin-type antifreeze protein in winter flounder (Pseudopleuronectes americanus) epidermis following metamorphosis. J Morphol 257:78–86

    Article  CAS  PubMed  Google Scholar 

  • Naiman RJ, Gerking SD, Stuart RE (1976) Osmoregulation in the Death Valley pupfish Cyprinodon milleri (Pisces: Cyprinodontidae). Copeia 1976:807–810

    Article  Google Scholar 

  • Nelson JS (1968) Salinity tolerance of brook sticklebacks, Culaea inconstans, freshwater ninespine sticklebacks, Pungitius pungitius, and freshwater fourspine sticklebacks, Apeltes quadracus. Can J Zool 46:663–667

    Article  Google Scholar 

  • Nelson JS (1976) Fishes of the world. Wiley, New York

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken 601 pp

    Google Scholar 

  • Nelson JS, Crossman EJ, Espinosa-Pérez H, Findley LT, Gilbert CR, Lea RN, Williams JD (2004) Common and scientific names of fishes from the United States, Canada, and Mexico, 6th edn. American Fisheries Society Special Publication 29, Bethesda

  • Nilssen KJ, Gulseth OA (1998) Summer seawater tolerance of small-sized Arctic charr, Salvelinus alpinus, on Svalbard. Polar Biol 20:95–98

    Article  Google Scholar 

  • Nilssen KJ, Gulseth OA, Iversen M, Kjøl R (1997) Summer osmoregulatory capacity of the world’s northernmost living salmonid. Am J Physiol (Reg Int Comp Physiol 41) 272:R743–R749

    CAS  Google Scholar 

  • Nordlie FG (1976) Influence of environmental temperature on plasma ionic and osmotic concentrations in Mugil cephalus Lin. Comp Biochem Physiol 55A:379–381

    Article  Google Scholar 

  • Nordlie FG (1985) Osmotic regulation in the sheepshead minnow Cyprinodon variegatus (Lacépède). J Fish Biol 26:161–170

    Article  Google Scholar 

  • Nordlie FG (1987a) Plasma osmotic, Na+ and Cl regulation under euryhaline conditions in Cyprinodon variegatus Lacépède. Comp Biochem Physiol 86A:57–61

    Article  CAS  Google Scholar 

  • Nordlie FG (1987b) Salinity tolerance and osmotic regulation in the diamond killifish, Adinia xenica. Environ Biol Fish 20:229–232

    Article  Google Scholar 

  • Nordlie FG (2000) Salinity responses in three species of Fundulus (Teleostei: Fundulidae) from Florida salt marshes. Verh Int Ver Theor Angew Limnol 27:1276–1279

    Google Scholar 

  • Nordlie FG, Haney DC (1993) Euryhaline adaptations in the fat sleeper, Dormitator maculatus. J Fish Biol 43:433–439

    Article  CAS  Google Scholar 

  • Nordlie FG, Mirandi A (1996) Salinity relationships in a freshwater population of eastern mosquitofish. J Fish Biol 49:1226–1232

    Article  Google Scholar 

  • Nordlie FG, Walsh SJ (1989) Adaptive radiation in osmotic regulatory patterns among three species of cyprinodontids (Teleostei: Atherinomorpha). Physiol Zool 62:1203–1218

    Google Scholar 

  • Nordlie FG, Szelistowski WA, Nordlie WC (1982) Ontogenesis of osmotic regulation in the striped mullet, Mugil cephalus L. J Fish Biol 20:79–86

    Article  Google Scholar 

  • Nordlie FG, Haney DC, Walsh SJ (1992) Comparisons of salinity tolerance and osmotic regulatory capabilities in populations of sailfin molly (Poecilia latipinna) from brackish and fresh waters. Copeia 1992:741–746

    Article  Google Scholar 

  • O’Grady SM, DeVries AL (1982) Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 57:219–228

    Article  Google Scholar 

  • O’Grady SM, Ellory JC, DeVries AL (1982) Protein and glycoprotein antifreezes in the intestinal fluid of polar fishes. J Exp Biol 98:429–438

    PubMed  Google Scholar 

  • O’Grady SM, Ellory JC, DeVries AL (1983) The role of low molecular weight antifreeze glycopeptides in the bile and intestinal fluid of Antarctic fish. J Exp Biol 104:149–162

    Google Scholar 

  • Ogawa M, Wada Y, Matsuura Y, Kukuchi M (1995) Seasonal differences of the plasma osmolalities of some teleosts in high-latitude cold water in Japan. In: Proceedings of the NIPR symposium on polar biology, vol 8, pp 177–181

  • Oikari A (1975) Hydromineral balance in some brackish-water teleosts after thermal acclimation, particularly at temperatures near zero. Ann Zool Fennici 12:215–229

    CAS  Google Scholar 

  • Oikari A, Kristoffersson R (1973) Plasma ionic and osmotic levels in Myoxocephalus quadricornis (L.) in brackish water during temperature acclimation, particularly to cold. Ann Zool Fennici 10:495–499

    Google Scholar 

  • Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from Arctic fish. J Biol Chem 253:5338–5343

    CAS  PubMed  Google Scholar 

  • Page LM, Burr BM (1991) A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin, New York

    Google Scholar 

  • Parry G (1961) Osmotic and ionic changes in blood and muscle of migrating salmonids. J Exp Biol 38:411–427

    CAS  Google Scholar 

  • Parry G (1966) Osmotic adaptation in fishes. Biol Rev 41:392–444

    Article  CAS  PubMed  Google Scholar 

  • Pearcy WG (1961) Seasonal changes in osmotic pressure of flounder sera. Science 134:193–194

    Article  PubMed  CAS  Google Scholar 

  • Peterson MS (1988) Comparative physiological ecology of centrarchids in hyposaline environments. Can J Fish Aquat Sci 45:827–833

    Article  Google Scholar 

  • Peterson MS (1990) Hypoxia-induced physiological changes in two mangrove swamp fishes: sheepshead minnow, Cyprinodon variegatus Lacepede and sailfin molly, Poecilia latipinna (LeSueur). Comp Biochem Physiol 97A:17–21

    Article  Google Scholar 

  • Petzel D (2005) Drinking in Antarctic fishes. Polar Biol 28:763–768

    Article  Google Scholar 

  • Pickering AD, Morris R (1970) Osmoregulation of Lampetra fluviatilis L. and Petromyzon marinus (Cyclostomata) in hyperosmotic solutions. J Exp Biol 53:231–243

    CAS  PubMed  Google Scholar 

  • Pickford GE, Grant FB (1967) Serum osmolality in the coelacanth, Latimeria chalumnae: urea retention and ion regulation. Science 155:568–570

    Article  CAS  PubMed  Google Scholar 

  • Pickford GE, Pang PKT, Stanley JC, Fleming WR (1966) Calcium and freshwater survival in the euryhaline cyprinodonts, Fundulus kansae and Fundulus heteroclitus. Comp Biochem Physiol 18:503–509

    Article  CAS  PubMed  Google Scholar 

  • Pickford GE, Grant FB, Umminger BL (1969) Studies on the blood serum of the euryhaline cyprinodont fish, Fundulus heteroclitus, adapted to fresh or to salt water. Trans Conn Acad Arts Sci 43:25–70

    Google Scholar 

  • Piermarini PM, Evans DH (1998) Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jessup of the St. Johns River, Florida. Physiol Zool 71:553–560

    CAS  PubMed  Google Scholar 

  • Plaut I (1998) Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol Biochem 19:181–188

    Article  CAS  Google Scholar 

  • Plaut I (1999) Effects of salinity on survival, osmoregulation, and oxygen consumption in the intertidal blenny, Parablennius sanguinolentus. Copeia 1999:775–779

    Article  Google Scholar 

  • Plaut I (2000) Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol Biochem Zool 73:590–596

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Yglesias M, Laufer M, Herrera FC (1988) Ionic and osmotic regulation in blood, aqueous humor, gills, and retina in the euryhaline fish, Eugerres plumieri. Comp Biochem Physiol 89A:377–382

    Article  Google Scholar 

  • Potts WTW (1968) Osmotic and ionic regulation. Ann Rev Physiol 30:73–104

    Article  CAS  Google Scholar 

  • Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals. Pergamon, Oxford

    Google Scholar 

  • Potts WTW, Rudy PP (1972) Aspects of osmotic and ionic regulation in the sturgeon. J Exp Biol 56:703–715

    Google Scholar 

  • Prosser CL, Mackay W, Kato K (1970) Osmotic and ionic concentrations in some Alaskan fish and goldfish from different temperatures. Physiol Zool 43:81–89

    CAS  Google Scholar 

  • Ramsay JA, Brown RHJ (1955) Simplified apparatus and procedure for freezing-point determinations upon small volumes of fluid. J Sci Instrum 32:372–375

    Article  CAS  Google Scholar 

  • Rankin JC, Davenport J (1981) Animal osmoregulation. Wiley, New York

    Google Scholar 

  • Rao GMM (1969) Effect of activity, salinity, and temperature on plasma concentrations of rainbow trout. Can J Zool 47:131–134

    Article  Google Scholar 

  • Rawson DS, Moore JE (1944) The saline lakes of Saskatchewan. Can J Res D22:141–201

    Google Scholar 

  • Raymond JA (1989) Freezing resistance in some northern populations of Pacific herring, Clupea harengus pallasi. Can J Fish Aquat Sci 46:2104–2107

    Article  Google Scholar 

  • Raymond JA (1992) Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 262:347–352

    Article  CAS  Google Scholar 

  • Raymond JA (1993) Glycerol and water balance in a near-isosmotic teleost, winter acclimatized rainbow smelt. Can J Zool 71:1849–1854

    Article  CAS  Google Scholar 

  • Raymond J (1994) Seasonal variations in trimethylamine oxide and urea in the blood of a cold-adapted marine teleost, the rainbow smelt. Fish Physiol Biochem 13:13–22

    Article  CAS  Google Scholar 

  • Raymond JA, DeVries AL (1998) Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol Biochem 18:387–398

    Article  CAS  Google Scholar 

  • Raymond JA, Hassel A (2000) Some characteristics of freezing avoidance in two osmerids, rainbow smelt and capelin. J Fish Biol 57(Suppl A):1–7

    Article  CAS  Google Scholar 

  • Raymond JA, Hattori H, Tsumura K (1996) Metabolic responses of glycerol-producing osmerid fishes to cold temperature. Fish Sci 62:257–260

    CAS  Google Scholar 

  • Reisman HM, Kao MH, Fletcher GL (1984) Antifreeze glycoprotein in a “southern” population of Atlantic tomcod, Microgadus tomcod. Comp Biochem Physiol 78A:445–447

    Article  CAS  Google Scholar 

  • Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, King JR, Beamish RJ (2006) An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35:381–387

    Article  PubMed  Google Scholar 

  • Remane A, Schlieper C (1971) Biology of brackish water. Wiley Interscience, New York

    Google Scholar 

  • Renfro JL, Hill LG (1971) Osmotic acclimation in the Red River pupfish, Cyprinodon rubrofluviatilis. Comp Biochem Physiol 40A:711–714

    Article  Google Scholar 

  • Robins CR, Ray GC (1986) A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co., New York

    Google Scholar 

  • Rodriguez A, Gallardo MA, Gisbert E, Santilari S, Ibara A, Sánchez J, Castelló-Orvay F (2003) Osmoregulation in juvenile Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem 26:345–354

    Article  Google Scholar 

  • Roessig JM, Woodley CM, Cech JJ Jr, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275

    Article  Google Scholar 

  • Samerotte AL, Drazen JC, Brand GL, Seibel BA, Yancey PH (2007) Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation. Physiol Biochem Zool 80:197–208

    Article  CAS  PubMed  Google Scholar 

  • Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 209:187–196

    Article  Google Scholar 

  • Sangiao-Alvarellos S, Arjona FJ, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304

    Article  PubMed  Google Scholar 

  • Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett HV, Cayan DR, Fogarty M, Harwell MA, Howarth RW, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on US coastal and marine ecosystems. Estuaries 25:149–164

    Article  Google Scholar 

  • Schmitz M (1992) Annual variations in rheotactic behaviour and seawater adaptability in landlocked Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 49:448–452

    Article  Google Scholar 

  • Scholander PF, Maggert JE (1971) Supercooling and ice propagation in blood from Arctic fishes. Cryobiology 8:371–374

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, van Dam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Super cooling and osmoregulation in Arctic fish. J Cell Comp Physiol 49:5–24

    Article  CAS  Google Scholar 

  • Scott DM, Wilson RW, Brown JA (2007) The osmoregulatory ability of the invasive species sunbleak Leucaspius delineatus and topmouth gudeon Pseudorasbora parva at elevated salinities and their likely dispersal via brackish water. J Fish Biol 70:1606–1614

    Article  CAS  Google Scholar 

  • Seibel BA, Walsh PJ (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol 205:297–306

    CAS  PubMed  Google Scholar 

  • Sharratt BM, Chester Jones I, Bellamy D (1964) Water and electrolyte composition of the body and renal function of the eel (Anguilla anguilla L.). Comp Biochem Physiol 11:9–18

    Article  CAS  PubMed  Google Scholar 

  • Shelton C, Macdonald AG, Pequeux A, Gilchrist I (1985) The ionic composition of the plasma and erythrocytes of deep sea fish. J Comp Physiol B 155:629–633

    Article  CAS  PubMed  Google Scholar 

  • Shelukhin GK, Metallov GF, Geraskin PP (1990) Effect of temperature and salinity of Caspian Sea water on juvenile Russian sturgeon, Acipenser güldenstädti. J Ichthyol 30:75–85

    Google Scholar 

  • Shrimpton JM, Björnsson BT, McCormick SD (2000) Can Atlantic salmon smolt twice? Endocrine and biochemical changes during smolting. Can J Fish Aquat Sci 57:1969–1976

    Article  CAS  Google Scholar 

  • Skadhauge E, Lotan R (1974) Drinking rate and oxygen consumption in the euryhaline teleost Aphanius dispar in waters of high salinity. J Exp Biol 60:547–556

    CAS  PubMed  Google Scholar 

  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026

    CAS  PubMed  Google Scholar 

  • Smit GL, Hattingh J, Ferreira JT (1981) The physiological responses of blood during thermal adaptation in three freshwater fish species. J Fish Biol 19:147–160

    Article  Google Scholar 

  • Smith HW (1929) The composition of the body fluids of the goosefish (Lophius piscatorius). J Biol Chem 82:71–75

    CAS  Google Scholar 

  • Smith HW (1930) Metabolism of the lung-fish, Protopterus aethiopicus. J Biol Chem 88:97–130

    CAS  Google Scholar 

  • Smith HW (1931a) The absorption and excretion of water and salts by the elasmobranch fishes. I. Freshwater elasmobranches. Am J Physiol 98:279–295

    CAS  Google Scholar 

  • Smith HW (1931b) The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98:296–310

    CAS  Google Scholar 

  • Smith HW (1932) Water regulation and its evolution in fishes. Q Rev Biol 1:1–26

    Article  Google Scholar 

  • Smith RL, Paulson PC (1977) Osmoregulatory seasonality and freezing avoidance in some fishes from a subarctic eelgrass community. Copeia 1977:362–369

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman, New York

    Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    Article  CAS  PubMed  Google Scholar 

  • Stanley JG, Colby PJ (1971) Effects of temperature on electrolyte balance and osmoregulation in the alewife (Alosa pseudoharengus) in fresh and sea water. Trans Am Fish Soc 100:624–638

    Article  CAS  Google Scholar 

  • Stanley JG, Fleming WR (1964) Excretion of hypertonic urine by a teleost. Science 144:63–64

    Article  PubMed  CAS  Google Scholar 

  • Stanley JG, Fleming WR (1977) Failure of seawater acclimation to alter osmotic toxicity in Fundulus kansae. Comp Biochem Physiol 58A:53–56

    Article  Google Scholar 

  • Staurnes M (1993) Difference between summer and winter gill Na/K-ATPase activity and hypoosmoregulatory ability of seafarmed anadromous Arctic char (Salvelinus alpinus). Comp Biochem Physiol 105A:475–477

    Article  Google Scholar 

  • Staurnes M, Sigholt T, Asgard T, Baeverfjord G (2001) Effects of temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolts. Aquaculture 201:153–159

    Article  Google Scholar 

  • Stuenkel EL, Hillyard SD (1981) The effects of temperature and salinity acclimation on metabolic rate and osmoregulation in the pupfish Cyprinodon salinus. Copeia 1981:411–417

    Article  Google Scholar 

  • Sulya LL, Box BE, Gunter G (1960) Distribution of some blood constituents in fishes from the Gulf of Mexico. Am J Physiol 199:1177–1180

    CAS  Google Scholar 

  • Swanson C (1998) Interactive effects of salinity on the metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366

    PubMed  Google Scholar 

  • Takei Y, Tsukada T (2001) Ambient temperature regulates drinking and arterial pressure in eels. Zool Sci 18:963–967

    Article  Google Scholar 

  • Thorson TB (1967) Osmoregulation in fresh-water elasmobranches. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. Johns Hopkins, Baltimore, pp 265–270

    Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1967) Potamotrygon spp.: elasmobranchs with low urea content. Science 158:375–377

    Article  CAS  PubMed  Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1973) Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharhinus leucas from freshwater and saline environments. Physiol Zool 46:29–42

    CAS  Google Scholar 

  • Tort L, Landri P, Altimiras J (1994) Physiological and metabolic changes of sea bream Sparus aurata to short-term acclimation at low salinity. Comp Biochem Physiol 108A:75–80

    Article  CAS  Google Scholar 

  • Treberg JR, Wilson CE, Richards RC, Ewart KV, Driedzic WR (2002) The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation. J Exp Biol 205:1419–1427

    CAS  PubMed  Google Scholar 

  • Turner JD, Schrag JD, DeVries AL (1985) Ocular freezing avoidance in Antarctic fish. J Exp Biol 118:121–131

    Google Scholar 

  • Umminger BL (1969a) Physiological studies on supercooled killifish (Fundulus heteroclitus). I. Serum inorganic constituents in relation to osmotic and ionic regulation at subzero temperatures. J Exp Zool 172:283–302

    Article  CAS  PubMed  Google Scholar 

  • Umminger BL (1969b) Physiological studies on supercooled killifish (Fundulus heteroclitus). II. Serum organic constituents and the problem of supercooling. J Exp Zool 172:409–423

    Article  CAS  Google Scholar 

  • Umminger BL (1970a) Effects of subzero temperatures and trawling stress on serum osmolality in the winter flounder Pseudopleuronectes americanus. Biol Bull 139:574–579

    Article  CAS  PubMed  Google Scholar 

  • Umminger BL (1970b) Physiological studies on supercooled killifish (Fundulus heteroclitus). III. Carbohydrate metabolism and survival at subzero temperatures. J Exp Zool 173:159–174

    Article  CAS  PubMed  Google Scholar 

  • Umminger BL (1970c) Osmoregulation by the killifish Fundulus heteroclitus, in fresh water at temperatures near freezing. Nature 225:294–295

    Article  Google Scholar 

  • Umminger BL (1971a) Chemical studies of cold death in the Gulf killifish, Fundulus grandis. Comp Biochem Physiol 39A:625–632

    Article  Google Scholar 

  • Umminger BL (1971b) Osmoregulatory overcompensation in the goldfish, Carassius auratus at temperatures near freezing. Copeia 1971:686–691

    Article  Google Scholar 

  • Umminger BL (1971c) Osmoregulatory role of serum glucose in freshwater-adapted killifish (Fundulus heteroclitus) at temperatures near freezing. Comp Biochem Physiol 38A:141–145

    Article  Google Scholar 

  • Umminger BL (1971d) Patterns of osmoregulation in freshwater fishes at temperatures near freezing. Physiol Zool 44:20–27

    CAS  Google Scholar 

  • Umminger BL, Mahoney JB (1972) Seasonal changes in the serum chemistry of the winter flounder, Pseudopleuronectes americanus. Trans Am Fish Soc 101:746–748

    Article  CAS  Google Scholar 

  • Urist MR (1962) Calcium and other ions in blood and skeleton of Nicaraguan fresh-water shark. Science 137:984–986

    Article  CAS  PubMed  Google Scholar 

  • Valentine DW, Miller R (1969) Osmoregulation in the California killifish, Fundulus parvipinnis. Calif Fish Game 55:20–25

    Google Scholar 

  • Valerio PF, Kao MH, Fletcher GL (1990) Thermal hysteresis activity in the skin of the cunner, Tautogolabrus adspersus. Can J Zool 68:1065–1067

    Article  Google Scholar 

  • Valerio PF, Kao MH, Fletcher GL (1992) Fish skin: an effective barrier to ice crystal propagation. J Exp Biol 164:135–151

    Article  Google Scholar 

  • Van Waarde A (1988) Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp Biochem Physiol 91B:207–228

    Google Scholar 

  • Varsamos S (2002) Tolerance range and osmoregulation in hypersaline conditions in the European sea bass (Dicentrarchus labrax). J Mar Biol Assoc UK 82:1047–1048

    Article  Google Scholar 

  • Virtanen E, Oikari A (1984) Effects of low acclimation temperature on salinity adaptation in the presmolt salmon, Salmo salar L. Comp Biochem Physiol 78A:387–392

    Article  CAS  Google Scholar 

  • Virtanen E, Salama A, Lönn B-E (1988) Adaptations in the capacity of ionic and osmotic regulation in young Baltic salmon (Salmo salar L.) in brackish waters. Comp Biochem Physiol 91A:79–86

    Article  Google Scholar 

  • Vislie T, Fugelli K (1975) Cell volume regulation in flounder (Platichthys flesus) heart muscle accompanying an alteration in plasma osmolality. Comp Biochem Physiol 52A:415–418

    Article  Google Scholar 

  • Wagner HH, Conte FP, Fessler JL (1969) Development of osmotic and ionic regulation in two races of chinook salmon Oncorhynchus tshawytscha. Comp Biochem Physiol 29:325–341

    Article  CAS  PubMed  Google Scholar 

  • Walker BW (1961) The ecology of the Salton Sea, California, in relation to the sportfishery. Fish Bull No. 113, State of California, Department of Fish and Game, Sacramento, CA

  • Weitzman SH (1997) Systematics of deep-sea fishes. In: Randall DJ, Farrell AP (eds) Deep-sea fishes. Fish physiology, vol 16. Academic Press, San Diego, pp 43–77

    Chapter  Google Scholar 

  • Westenfelder C, Birch FM, Baranowski RL, Rosenfeld MJ, Shiozawa DK, Kablitz C (1988) Atrial natriuretic factor and salt adaptation in the teleost fish Gila atraria. Am J Physiol (Renal Fluid Electrolyte Physiol 24) 255:F1281–F1286

    CAS  Google Scholar 

  • Whitfield AK (1996) A review of factors influencing fish utilization of South African estuaries. Trans R Soc S Afr 51:115–137

    Google Scholar 

  • Whitfield AK, Blaber SJM (1976) The effects of temperature and salinity on Tilapia rendalli Boulanger 1896. J Fish Biol 9:99–104

    Article  Google Scholar 

  • Wilkie MP, Morgan TP, Galvez F, Smith RW, Kajimura M, Ip YK, Wood CM (2007) The African lungfish (Protopterus dolloi): ionregulation and osmoregulation in a fish out of water. Physiol Biochem Zool 80:99–112

    Article  CAS  PubMed  Google Scholar 

  • Withers PC, Morrison G, Guppy M (1994a) Buoyancy role of urea and TMAO in an elasmobranch fish, the Port Jackson shark, Heterdontus portusjacksoni. Physiol Zool 67:693–705

    CAS  Google Scholar 

  • Withers PC, Morrison G, Hefter GT, Pang T (1994b) Role of urea and methylamines in buoyancy of elasmobranches. J Exp Biol 188:175–189

    CAS  PubMed  Google Scholar 

  • Wöhrmann APA (1996) Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea. Mar Ecol Prog Ser 130:47–59

    Article  Google Scholar 

  • Woo NYS, Fung ACY (1981) Studies on the biology of the red sea bream, Chrysophrys major-II. Salinity adaptation. Comp Biochem Physiol 69A:237–242

    Article  CAS  Google Scholar 

  • Woo NYS, Wu RSS (1982) Metabolic and osmoregulatory response to reduced salinities in the red grouper, Epinephelus akaara (Temminck and Schlegel), and the black sea bream, Mylio macrocephalus (Basilowsky). J Exp Mar Biol Ecol 65:139–161

    Article  CAS  Google Scholar 

  • Wood CM, Bergman H, Laurent P, Maina JN, Narahara A, Walsh P (1994) Urea production, acid-base regulation and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36

    CAS  PubMed  Google Scholar 

  • Wood CM, Wilson P, Bergman HL, Bergman AN, Laurent P, Otiang’a-Owiti G, Walsh PJ (2002) Ionoregulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515

    Article  CAS  Google Scholar 

  • Wood CM, Du J, Rogers J, Brauner CJ, Richards JG, Semple JW, Murray BW, Chen X-Q, Wang Y (2007) Przewalski’s naked carp (Gymnocypris przewalskii): an endangered species taking a metabolic holiday in Lake Quinghai, China. Physiol Biochem Zool 80:59–77

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Li Z, Xiong B (2005) Preliminary results on osmolality response of pufferfish Takifugu obscurus to sudden salinity change. J Appl Ichthyol 21:156–159

    Article  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Siebenaller JF (1999) Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol 202:3597–3603

    CAS  PubMed  Google Scholar 

  • Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212:205–213

    Article  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yeh Y, Feeney RE (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–617

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa JSM, McCormick SD, Young G, Bern H (1993) Effects of salinity on chloride cells and Na+, K+-ATPase in the teleost Gillichthys mirabilis. Comp Biochem Physiol 105A:311–317

    Article  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zydlewski J, McCormick SD (1997) The loss of hyperosmoregulatory ability in migrating juvenile American shad, Alosa sapidissima. Can J Fish Aquat Sci 54:2377–2387

    Article  Google Scholar 

Download references

Acknowledgments

My sincere thanks go to the Department of Zoology (now Department of Biology) and Dr. K. A. Bjorndal for providing space and facilities for my work. Also, I thank Dennis Haney, Steve Walsh, John Binello, Frank Davis, and the many others, students and colleagues, who participated with me in field and laboratory work, seminars and discussions. My thanks also to two anonymous reviewers who provided thoughtful comments for improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Nordlie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordlie, F.G. Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review. Rev Fish Biol Fisheries 19, 481–564 (2009). https://doi.org/10.1007/s11160-009-9131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-009-9131-4

Keywords

Navigation