Skip to main content

Advertisement

Log in

Having a fit: impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Confirmatory factor analysis fit criteria typically are used to evaluate the unidimensionality of item banks. This study explored the degree to which the values of these statistics are affected by two characteristics of item banks developed to measure health outcomes: large numbers of items and nonnormal data.

Methods

Analyses were conducted on simulated and observed data. Observed data were responses to the Patient-Reported Outcome Measurement Information System (PROMIS) Pain Impact Item Bank. Simulated data fit the graded response model and conformed to a normal distribution or mirrored the distribution of the observed data. Confirmatory factor analyses (CFA), parallel analysis, and bifactor analysis were conducted.

Results

CFA fit values were found to be sensitive to data distribution and number of items. In some instances impact of distribution and item number was quite large.

Conclusions

We concluded that using traditional cutoffs and standards for CFA fit statistics is not recommended for establishing unidimensionality of item banks. An investigative approach is favored over reliance on published criteria. We found bifactor analysis to be appealing in this regard because it allows evaluation of the relative impact of secondary dimensions. In addition to these methodological conclusions, we judged the items of the PROMIS Pain Impact bank to be sufficiently unidimensional for item response theory (IRT) modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CAT:

Computer adaptive testing

CFA:

Confirmatory factor analyses

CFI:

Comparative Fit Index

EAP:

Expected a priori

EFA:

Exploratory factor analyses

GED:

General Educational Development

GRM:

Graded response model

IRT:

Item response theory

NIH:

National Institutes of Health

NNFI:

Nonnormed Fit Index

PROMIS:

Patient-Reported Outcomes Measurement Information System

PROs:

Patient-reported outcomes

RMSEA:

Root-mean-square error of approximation

SD:

Standard deviation

SRMR:

Standardized root-mean-square error

TLI:

Tucker–Lewis index

WLSMV:

Weighted least squares with mean and variance adjustment

WRMR:

Weighted root-mean-square residual

References

  1. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahway, NJ: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  2. Hambleton, R., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage Publishing, Inc.

    Google Scholar 

  3. Cook, K. F., O’Malley, K. J., & Roddey, T. S. (2005). Dynamic assessment of health outcomes: Time to let the CAT out of the bag? Health Services Research, 40, 1694–1711. doi:10.1111/j.1475-6773.2005.00446.x.

    Article  PubMed  Google Scholar 

  4. Dodd, B. G., De Ayala, R. J., & Koch, W. R. (1995). Computerized adaptive testing with polytomous items. Applied Psychological Measurement, 19, 5–22. doi:10.1177/014662169501900103.

    Article  Google Scholar 

  5. Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28. doi:10.1097/00005650-200009002-00007.

    Article  PubMed  CAS  Google Scholar 

  6. Wainer, H. (1990). Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  7. Cook, K. F., Teal, C. R., Bjorner, J. B., Cella, D., Chang, C. H., Crane, P. K., et al. (2007). IRT health outcomes data analysis project: An overview and summary. Quality of Life Research, 16(Suppl 1), 121–132. doi:10.1007/s11136-007-9177-5.

    Article  PubMed  Google Scholar 

  8. McDonald, R. (1981). The dimensionality of test and items. The British Journal of Mathematical and Statistical Psychology, 34, 100–117.

    Google Scholar 

  9. Reise, S. P., & Haviland, M. G. (2005). Item response theory and the measurement of clinical change. Journal of Personality Assessment, 84, 228–238. doi:10.1207/s15327752jpa8403_02.

    Article  PubMed  Google Scholar 

  10. Reise, S. P., Waller, N. G., & Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12, 287–297. doi:10.1037/1040-3590.12.3.287.

    Article  PubMed  CAS  Google Scholar 

  11. Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., et al. (2007). The Patient-Reported Outcomes Measurement Information System (PROMIS): Progress of an NIH Roadmap cooperative group during its first two years. Medical Care, 45, S3–S11. doi:10.1097/01.mlr.0000258615.42478.55.

    Article  PubMed  Google Scholar 

  12. Bjorner, J. B., Kosinski, M., & Ware, J. E., Jr. (2003). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the headache impact test (HIT). Quality of Life Research, 12, 913–933. doi:10.1023/A:1026163113446.

    Article  PubMed  Google Scholar 

  13. Lai, J. S., Crane, P. K., & Cella, D. (2006). Factor analysis techniques for assessing sufficient unidimensionality of cancer related fatigue. Quality of Life Research, 15, 1179–1190. doi:10.1007/s11136-006-0060-6.

    Article  PubMed  Google Scholar 

  14. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: The Guilford Press.

    Google Scholar 

  15. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  16. Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362. doi:10.1037/0033-2909.112.2.351.

    Article  PubMed  CAS  Google Scholar 

  17. Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7, 286. doi:10.1037/1040-3590.7.3.286.

    Article  Google Scholar 

  18. Mannion, A. F., Elfering, A., Staerkle, R., Junge, A., Grob, D., Semmer, N. K., et al. (2005). Outcome assessment in low back pain: How low can you go? European Spine Journal, 14, 1014–1026. doi:10.1007/s00586-005-0911-9.

    Article  PubMed  Google Scholar 

  19. McDonald, R. P., & Mok, M. M. C. (1995). Goodness of fit in item response models. Multivariate Behavioral Research, 30, 23–40. doi:10.1207/s15327906mbr3001_2.

    Article  Google Scholar 

  20. Bentler, P. M., & Mooijaart, A. (1989). Choice of structural model via parsimony: A rationale based on precision. Psychological Bulletin, 106, 315–317. doi:10.1037/0033-2909.106.2.315.

    Article  PubMed  CAS  Google Scholar 

  21. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–172). Newbury Park, CA: Sage Publications.

    Google Scholar 

  22. Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 76–79). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  23. Hu, L. T., & Bentler, P. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  24. Muthen, B. O., & Muthen, L. K. (2001). Mplus user’s guide. Los Angeles, CA: Muthen & Muthen.

    Google Scholar 

  25. Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Doctoral dissertation, University of California, Los Angeles.

  26. Tucker, L., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. doi:10.1007/BF02291170.

    Article  Google Scholar 

  27. Bentler, P. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238–246. doi:10.1037/0033-2909.107.2.238.

    Article  PubMed  CAS  Google Scholar 

  28. Joreskog, K. G., & Sorbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Lincolnwood, IL: Scientific Software International, Inc.

    Google Scholar 

  29. Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.

    Google Scholar 

  30. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. The British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    PubMed  Google Scholar 

  31. Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45, S22–S31. doi:10.1097/01.mlr.0000250483.85507.04.

    Article  PubMed  Google Scholar 

  32. McDonald, R. P. (1999). Test theory: A unified treatment. Mahway, NJ: Lawrence Earlbaum.

    Google Scholar 

  33. Kline, R. B. (1998). Principles and practice of structural equation modeling. New York, NY: The Guilford Press.

    Google Scholar 

  34. West, S. G., Finch, J. F., & Curran, P. J. (1995). SEM with nonnormal variables. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  35. Joreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL. Lincolnwood, IL: Scientific Software International, Inc.

    Google Scholar 

  36. Yuan, K. H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774. doi:10.2307/2965725.

    Article  Google Scholar 

  37. O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, & Computers, 32, 396–402.

    CAS  Google Scholar 

  38. Reise, S., Widaman, K., & Pugh, R. (1993). Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin, 114, 552. doi:10.1037/0033-2909.114.3.552.

    Article  PubMed  CAS  Google Scholar 

  39. Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(Suppl 1), 19–31. doi:10.1007/s11136-007-9183-7.

    Article  PubMed  Google Scholar 

  40. Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128. doi:10.1007/BF02294531.

    Article  Google Scholar 

  41. DeWalt, D. A., Rothrock, N., Yount, S., & Stone, A. A. (2007). Evaluation of item candidates: The PROMIS qualitative item review. Medical Care, 45, S12–S21. doi:10.1097/01.mlr.0000254567.79743.e2.

    Article  PubMed  Google Scholar 

  42. Reeve, B. B., Burke, L. B., Chiang, Y. P., Clauser, S. B., Colpe, L. J., Elias, J. W., et al. (2007). Enhancing measurement in health outcomes research supported by Agencies within the US Department of Health and Human Services. Quality of Life Research, 16(Suppl 1), 175–186. doi:10.1007/s11136-007-9190-8.

    Article  PubMed  Google Scholar 

  43. Thissen, D., Chen, W.-H., & Bock, R. D. (2003). Multilog (version 7). Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  44. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement No. 17.

  45. Bjorner, J. B., Smith, K. J., Stone, C., & Sun, X. (2007). IRTFIT: A macro for item fit and local dependence tests under IRT models. Lincoln, RI: QualityMetric.

    Google Scholar 

  46. Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S-X2: An item fit index for use with dichotomous item response theory models. Applied Psychological Measurement, 27, 289–298. doi:10.1177/0146621603027004004.

    Article  Google Scholar 

  47. Han, K. T. (2007). WinGen: Windows software that generates IRT parameters and item responses. Applied Psychological Measurement, 31, 457–459. doi:10.1177/0146621607299271.

    Article  Google Scholar 

  48. Han, K. T., & Hambleton, R. K. (2007). User’s manual: WinGen (Center for Educational Assessment Report No. 642). Amherst, MA: University of Massachusetts, School of Education.

    Google Scholar 

  49. Choi, S. W. (2008). Firestar: Computerized adaptive testing (CAT) simulation program for polytomous IRT models. Applied Psychological Measurement (in press).

  50. Zinbarg, R. E., Barlow, D. H., & Brown, T. A. (1997). Hierarchical structure and general factor saturation of the Anxiety Sensitivity Index: Evidence and implications. Psychological Assessment, 9, 277–284. doi:10.1037/1040-3590.9.3.277.

    Article  Google Scholar 

Download references

Acknowledgements

The Patient-Reported Outcomes Measurement Information System (PROMIS) is a National Institutes of Health (NIH) roadmap initiative to develop a computerized system measuring patient-reported outcomes in respondents with a wide range of chronic diseases and demographic characteristics. PROMIS was funded by cooperative agreements to a Statistical Coordinating Center (Evanston Northwestern Healthcare, PI: David Cella, PhD, U01AR52177) and six Primary Research Sites (Duke University, PI: Kevin Weinfurt, PhD, U01AR52186; University of North Carolina, PI: Darren DeWalt, MD, MPH, U01AR52181; University of Pittsburgh, PI: Paul A. Pilkonis, PhD, U01AR52155; Stanford University, PI: James Fries, MD, U01AR52158; Stony Brook University, PI: Arthur Stone, PhD, U01AR52170; and University of Washington, PI: Dagmar Amtmann, PhD, U01AR52171). NIH Science Officers on this project are Deborah Ader, PhD, Susan Czajkowski, PhD, Lawrence Fine, MD, DrPH, Louis Quatrano, PhD, Bryce Reeve, PhD, William Riley, PhD, and Susana Serrate-Sztein, PhD. This manuscript was reviewed by the PROMIS Publications Subcommittee prior to external peer review. See the web site at www.nihpromis.org for additional information on the PROMIS cooperative group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karon F. Cook.

Appendix

Appendix

See Table 5.

Table 5 Item content, response set, stem, and item parameters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, K.F., Kallen, M.A. & Amtmann, D. Having a fit: impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption. Qual Life Res 18, 447–460 (2009). https://doi.org/10.1007/s11136-009-9464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-009-9464-4

Keywords

Navigation