Skip to main content

Advertisement

Log in

IRT health outcomes data analysis project: an overview and summary

  • Original Paper
  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Background

In June 2004, the National Cancer Institute and the Drug Information Association co-sponsored the conference, “Improving the Measurement of Health Outcomes through the Applications of Item Response Theory (IRT) Modeling: Exploration of Item Banks and Computer-Adaptive Assessment.” A component of the conference was presentation of a psychometric and content analysis of a secondary dataset.

Objectives

A thorough psychometric and content analysis was conducted of two primary domains within a cancer health-related quality of life (HRQOL) dataset.

Research design

HRQOL scales were evaluated using factor analysis for categorical data, IRT modeling, and differential item functioning analyses. In addition, computerized adaptive administration of HRQOL item banks was simulated, and various IRT models were applied and compared.

Subjects

The original data were collected as part of the NCI-funded Quality of Life Evaluation in Oncology (Q-Score) Project. A total of 1,714 patients with cancer or HIV/AIDS were recruited from 5 clinical sites.

Measures

Items from 4 HRQOL instruments were evaluated: Cancer Rehabilitation Evaluation System–Short Form, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, Functional Assessment of Cancer Therapy and Medical Outcomes Study Short-Form Health Survey.

Results and conclusions

Four lessons learned from the project are discussed: the importance of good developmental item banks, the ambiguity of model fit results, the limits of our knowledge regarding the practical implications of model misfit, and the importance in the measurement of HRQOL of construct definition. With respect to these lessons, areas for future research are suggested. The feasibility of developing item banks for broad definitions of health is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chang, C.-H., & Cella, D. (1997). Equating health-related quality of life instruments in applied oncology settings. Physical Medicine and Rehabilitation: States of the Art Reviews, 11, 397–406.

    Google Scholar 

  2. Ganz, P. A., Schag, C. A., Lee, J. J., & Sim, M. S. (1992). The CARES: A generic measure of health-related quality of life for patients with cancer. Quality of Life Research, 1, 19–29.

    Article  PubMed  CAS  Google Scholar 

  3. Schag, C. A., Ganz, P. A., & Heinrich, R. L. (1991). CAncer Rehabilitation Evaluation System-short form (CARES-SF). A cancer specific rehabilitation and quality of life instrument. Cancer, 68, 1406–1413.

    Article  PubMed  CAS  Google Scholar 

  4. Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., Filiberti, A., Flechtner, H., Fleishman, S. B., & de Haes, J. C. (1993). The European organization for research and treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85, 365–376.

    Article  PubMed  CAS  Google Scholar 

  5. Cella, D. F., & Bonomi, A. E. (1995). Measuring quality of life: 1995 update. Oncology (Williston Park), 9, 47–60.

    CAS  Google Scholar 

  6. Cella, D. F., Tulsky, D. S., Gray, G., Sarafian, B., Linn, E., Bonomi, A., Silberman, M., Yellen, S. B., Winicour, P., Brannon, J., & et al. (1993). The Functional Assessment of Cancer Therapy Scale: Development and validation of the general measure. Journal of Clinical Oncology, 11, 570–579.

    PubMed  CAS  Google Scholar 

  7. Hays, R. D., Sherbourne, C. D., & Mazel, R. M. (1993). The RAND 36-Item Health Survey 1.0. Health Economics, 2, 217–227.

    Article  PubMed  CAS  Google Scholar 

  8. Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30, 473–483.

    Article  PubMed  Google Scholar 

  9. Nandakumar, R. (2004). Traditional dimensionality versus essential dimensionality. Journal of Educational Measurement, 28, 99–117.

    Article  Google Scholar 

  10. Smith, E. V., Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3, 205–231.

    PubMed  Google Scholar 

  11. Muthen, B. O., & Muthen, L. K. (2001). Mplus User’s Guide. Version 2. Los Angeles, CA: Muthen & Muthen.

    Google Scholar 

  12. Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In: R. H. Hoyle (Ed.), Structural equation modeling: concepts, issues and applications (pp. 76–79). Thousand Oaks, CA: Sage Publications.

  13. Bentler, P. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238–246.

    Article  PubMed  CAS  Google Scholar 

  14. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In: K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models. Newbury Park, CA: Sage Publications.

  15. Kline, R. B. (1998). Principles and practice of structural equation modeling. New York, NY: The Guilford Press.

    Google Scholar 

  16. McDonald, R. P. (1999). Test theory: A unified treatment. Mahway, NJ: Lawrence Earlbaum.

    Google Scholar 

  17. Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.

    Article  Google Scholar 

  18. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–173.

    Article  Google Scholar 

  19. Muraki, E. (1992). A generalized partial credit model: Application of an EM-algorithm. Applied Psychological Measurement, 16, 159.

    Article  Google Scholar 

  20. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.

  21. Muraki, E., & Bock, R. D. (1997). PARSCALE 3: IRT based test scoring and item analysis for graded items and rating scales. Chicago, IL: Scientific Software International, Inc.

    Google Scholar 

  22. Linacre, J. M. (2002). WINSTEPS: Rasch-model computer program. Version 3.36. Chicago: MESA Press.

    Google Scholar 

  23. Verhelst, N. D., & Glas, C. A. W. (1995). The one parameter-logistic model. New York: Springer-Verlag.

    Google Scholar 

  24. Stone, C. A., & Zhang, B. (2003). Assessing goodness of fit of item response theory models: A comparison of traditional and alternative procedures. Journal of Educational Measurement, 4, 331–352.

    Article  Google Scholar 

  25. Stone, C. A. (2000). Monte Carlo based null distribution for an alternative goodness-of-fit test statistic in IRT models. Journal of Educational Measurement, 37(1), 58–75.

    Article  Google Scholar 

  26. Stone, C. A. (2003). Empirical power and type I error rates for an IRT fit statistic that considers the precision of ability estimates. Educational and Psychological Measurement, 63, 566–586.

    Article  Google Scholar 

  27. Glas, C. A. W. (1999). Modification indices for the 2-PL and the nominal response model. Psychometrika, 64, 273–294.

    Article  Google Scholar 

  28. Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50–64.

    Article  Google Scholar 

  29. Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago: Mesa Press.

    Google Scholar 

  30. Wright, B. D. (1994). Reasonable mean-square fit. Rasch Measurement Transactions, 8, 370.

    Google Scholar 

  31. Smith, R. M., & Suh, K. K. (2003). Rasch fit statistics as a test of the invariance of item parameter estimates. Journal of Applied Measurement, 4, 153–163.

    PubMed  Google Scholar 

  32. Groenvold, M., Bjorner, J. B., Klee, M. C., & Kreiner, S. (1995). Test for item bias in a quality of life questionnaire. Journal of Clinical Epidemiology, 48, 805–816.

    Article  PubMed  CAS  Google Scholar 

  33. Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.

    Article  Google Scholar 

  34. Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa, Canada: Directorate of Human Resources Research and Evaluation, Department of National Defense.

  35. Camilli, G., & Shepard, L. A. (1994). Methods for identifying biased test items. Thousand Oaks, CA: Sage Publishers.

    Google Scholar 

  36. Thissen, D. (1991). MULTILOG TM User’s Guide multiple, categorical item analysis and test scoring using item response theory. Chicago, IL: Scientific Software Inc.

    Google Scholar 

  37. Thissen, D. (2001). IRTLRDIF: Software for the computation of the statistics involved in item response theory likelihood-ratio tests for differential item functioning. Version 2.0b.

  38. Collins, W. C., Raju, N. S., & Edwards, J. E. (2000). Assessing differential functioning in a satisfaction scale. Journal of Applied Measurement, 85, 451–461.

    CAS  Google Scholar 

  39. Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). IRT-based internal measures of differential functioning of items and tests. Applied Psychological Measurement, 19, 353–368.

    Article  Google Scholar 

  40. STATA. (2004). College Station, TX: StataCorp LP

  41. Crane, P. K., Jolley, L., & van Belle, G. (2003). DIFdetect. Seattle, WA: University of Sashington.

    Google Scholar 

  42. Box, G., & Draper, N. (1987). Empirical model building and response surfaces. New York: John Wiley and Sons.

    Google Scholar 

  43. Stewart, A. L., & Ware, J. E., Jr. (1992). Measuring functioning and well-being: The Medical Outcomes Study Approach. London: Duke University Press.

    Google Scholar 

  44. Gardner, W., Kelleher, K. J., & Pajer, K. A. (2002). Multidimensional adaptive testing for mental health problems in primary care. Medical Care, 40, 812–823.

    Article  PubMed  Google Scholar 

  45. Petersen, M. A., Groenvold, M., Aaronson, N., Fayers, P., Sprangers, M., & Bjorner, J. B. (2006). Multidimensional computerized adaptive testing of the EORTC QLQ-C30: Basic developments and evaluations. Quality of Life Research, 15, 315–329.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Study supported by NIH/NCI (Y1-PC-3028-01) and NIH R01 (CA60068). Additional salary support provided by National Institute of Arthritis and Musculoskeletal and Skin Diseases (1U01AR52171-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karon F. Cook.

 

 

 

Appendix Items included in factor analytic assessment of item bank(s) and unidimensionality

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, K.F., Teal, C.R., Bjorner, J.B. et al. IRT health outcomes data analysis project: an overview and summary. Qual Life Res 16 (Suppl 1), 121–132 (2007). https://doi.org/10.1007/s11136-007-9177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-007-9177-5

Keywords

Navigation