Skip to main content

Advertisement

Log in

Development and Characterization of Genomic and Gene-Based Microsatellite Markers in North American Red Oak Species

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Oaks (Quercus: Fagaceae) are ecological and economic keystones of many forested ecosystems but effective genetic management strategies are hindered by high levels of phenotypic plasticity within species and frequent hybridization among them. These same features, however, make oak communities suited for the study of speciation, hybridization, and genetic adaptation. Efforts to develop new and to adapt existing genomic resources to less-studied members of this genus should not only improve oak conservation and management but also aid the study of fundamental evolutionary processes. Here, we present a suite of 27 highly polymorphic simple sequence repeat (SSR) markers tested in four North American red oak (Quercus section Lobatae) species: Q. rubra, Q. ellipsoidalis, Q. coccinea, and Q. velutina. Five markers are genomic SSRs (gSSRs) — four novel and one previously transferred from Q. petraea — and 22 are gene-based SSRs derived from Q. robur and Q. petraea expressed sequence tags (EST-SSRs). Overall, levels of polymorphism detected with these primer pairs were high, with gene diversity (H e) averaging 0.66 across all loci in natural populations. In addition, we show that EST-SSR markers may have the potential to detect divergent selection at stress-resistance candidate genes among closely related oak species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Sequence data have been deposited in the GenBank, DDBJ Nucleotide Sequence Database and EMBL databases under the accession numbers JQ929659 (locus 1P10), JQ929660 (2P24), JQ929661 (3A05), and JQ929662 (3D15).

References

  • Abrams MD (1988) Comparative water relationships of three successional hardwood species in central Wisconsin. Tree Physiol 4:263–273. doi:10.1093/treephys/4.3.263

    Article  PubMed  Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238. doi:10.1093/treephys/7.1-2-3-4.227

    Article  PubMed  Google Scholar 

  • Aldrich PR, Cavender-Bares J (2011) Quercus. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources, forest trees. Springer, Berlin, pp 89–129, doi: 10.1007/978-3-642-21250-5

    Chapter  Google Scholar 

  • Aldrich PR, Glaubitz JC, Parker GR, Rhodes OE, Michler CH (2005) Genetic structure inside a declining red oak community in old-growth forest. J Hered 96:627–634. doi:10.1093/jhered/esi115

    Article  PubMed  CAS  Google Scholar 

  • Aldrich PR, Parker GR, Michler CH, Romero-Severson J (2003a) Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest. Can J For Res 33:2228–2237. doi:10.1139/x03-160

    Article  Google Scholar 

  • Aldrich PR, Jagtap M, Michler CH, Romero-Severson J (2003b) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genet 52:176–179

    Google Scholar 

  • Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474. doi:10.1046/j.1471-8278.2002.00282.x

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinforma 8:323. doi:10.1186/1471-2105-9-323

    Article  Google Scholar 

  • Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (2005) Adaptation and speciation: what can Fst tell us? Trends Ecol Evol 20:435–440

    Article  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roc Soc B 263:1619–1626

    Article  Google Scholar 

  • Blue MP, Jensen RJ (1988) Positional and season variaion in oak (Quercus: Fagaceae) leaf morphology. Am J Bot 75:939–947. doi:10.2307/2443759

    Article  Google Scholar 

  • Bodénès C, Joandet S, Laigret F, Kremer A (1997) Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity 78:433–444. doi:10.1038/hdy.1997.67

    Article  Google Scholar 

  • Bouck A, Vision T (2007) The molecular ecologist's guide to expressed sequence tags. Mol Ecol 16:907–924. doi:10.1111/j.1365-294X.2006.03195.x

    Article  PubMed  CAS  Google Scholar 

  • Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in Northern and Central Italy. Ann Bot 85:325–333. doi:10.1006/anbo.1999.1046

    Article  Google Scholar 

  • Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P (2010) Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers. BMC Plant Biol 10. doi:10.1186/1471-2229-10-266

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2(4): e64. doi:10.1371/journal.pgen.0020064

  • Clotfelter ED, Pedersen AB, Cranford JA, Ram N, Snajdr EA, Nolan V, Ketterson ED (2007) Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia 154:493–503. doi:10.1007/s00442-007-0859-z

    Article  PubMed  Google Scholar 

  • Coart E, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Roldan-Ruiz I (2002) AFLP markers demonstrate local genetic differentiation between two indigenous oak species Quercus robur L. and Quercus petraea (Matt.) Liebl in Flemish populations. Theor Appl Genet 105:431–439. doi:10.1007/s00122-002-0920-6

    Article  PubMed  CAS  Google Scholar 

  • Curtu AL, Gailing O, Finkeldey R (2007a) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol Biol 7:218. doi:10.1186/1471-2148-7-218

    Article  PubMed  Google Scholar 

  • Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007b) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biol 9:116–126. doi:10.1055/s-2006-924542

    Article  PubMed  CAS  Google Scholar 

  • Durand J, Bodénès C, Chancerel E, Frigero J-M, Vendramin GG, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. doi:10.1186/1471-2164-11-570

    Article  PubMed  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132. doi:10.1038/sj.hdy.6801001

    Article  PubMed  CAS  Google Scholar 

  • Fernández J, Sork V, Gallego G, López J, Bohorques A, Tohme J (2000) Cross-amplification of microsatellite loci in a neotropical Quercus species and standardization of DNA extraction from mature leaves dried in silica gel. Plant Mol Biol Rep 18:397–397. doi:10.1007/bf02825070

    Article  Google Scholar 

  • Forkner RE, Hunter MD (2000) What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81:1588–1600. doi:10.2307/177309

    Article  Google Scholar 

  • Gerwein JB, Kesseli RV (2006) Genetic diversity and population structure of Quercus rubra (Fagaceae) in old-growth and secondary forests in southern New England. Rhodora 108:1–18. doi:10.3119/05-9.1

    Article  Google Scholar 

  • Guo Y, Huang C, Xie Y, Song F, Zhou X (2010) A tomato glutaredoxin gene SIGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232:1499–1509. doi:10.1007/s00425-010-1271-1

    Article  PubMed  CAS  Google Scholar 

  • Guttman SI, Weigt LA (1989) Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Can J Bot 67:339–351

    Article  Google Scholar 

  • Hipp AL, Weber JA (2008) Taxonomy of Hill's oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP data. Syst Bot 33:148–158. doi:10.1600/036364408783887320

    Article  Google Scholar 

  • Hokanson SC, Isebrands JG, Jensen RJ, Hancock JF (1993) Isozyme variation in oaks of the Apostle Islands in Wisconsin — genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1349–1357. doi:10.2307/2445720

    Article  CAS  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. doi:10.1023/B:COGE.0000041021.91777.1a

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Kremer A, Kleinschmit J, Cottrell J, Cundall EP, Deans JD, Ducousso A, Konig AO, Lowe AJ, Munro RC, Petit RJ, Stephan BR (2002) Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For Ecol Manage 156:75–87. doi:10.1016/s0378-1127(01)00635-1

    Article  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369. doi:10.1007/s00122-004-1635-7

    Article  PubMed  CAS  Google Scholar 

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, Konig A, Lowe AJ, Van Dam BC, Barreneche T, Bodénès C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H, Kremer A (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (matt.) liebl. and Q. robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Rese 23:23–35. doi:10.1017/S0016672300014634

    Article  Google Scholar 

  • McShea WJ, Healy WM, Devers P, Fearer T, Koch FH, Stauffer D, Waldon J (2007) Forestry matters: decline of oaks will impact wildlife in hardwood forests. J Wildl Manage 71:1717–1728. doi:10.219

    Article  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100. doi:10.3732/ajb.11000233/2006-169

    Article  PubMed  Google Scholar 

  • Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridising oaks (Quercus spp.). Mol Ecol 14:549–561. doi:10.1111/j.1365-294X.2004.02418.x

    Article  PubMed  CAS  Google Scholar 

  • Oldfield S, Eastwood A (2007) The red list of oaks. Fauna & Flora International Cambridge, UK

    Google Scholar 

  • Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast. Bioscience 46:323–330. doi:10.2307/1312946

    Article  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi:10.1038/nrg1707

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) PRIMER3 on the www for general users and for biologist programmers. In: Krawertz S, Misener S (eds) Bioinformatic methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodénès C, Burg K, Kremer A (2004) Genome scanning of interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (matt.) liebl.). Genetics 168:1615–1626. doi:10.1534/genetics.104.026849

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Marshall TC, Pemberton JM (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808. doi:10.1046/j.1365-294x.2000.00930.x

    Article  PubMed  CAS  Google Scholar 

  • Sork VL, Huang S, Wiener E (1993) Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. Ann Sci For 50(suppl 1):261s–270s

    Article  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133. doi:10.1111/j.1365-313X.2006.02678.x

    Article  PubMed  CAS  Google Scholar 

  • Steinkellner H, Lexer C, Turetschek E, Glössl J (2003) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194. doi:10.1046/j.1365-294X.1997.00288.x

    Article  Google Scholar 

  • Tomlinson PT, Jensen RJ, Hancock JF (2000) Do whole tree silvic characters indicate hybridization in red oak (Quercus section Lobatae)? Am Midl Nat 143:154–168. doi:10.1674/0003-0031(2000)143[0154:dwtsci]2.0.co;2

    Article  Google Scholar 

  • Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628. doi:10.1073/pnas.0706547105

    Article  PubMed  CAS  Google Scholar 

  • United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations (UNECE/FAO) (2011) Forest products annual market review 2010–2011. Geneva timber and forest study paper 27. United Nations Publications, Geneva

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. doi:10.1111/j.1471-8286.2005.01082.x

    Article  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076. doi:10.1093/molbev/msi09

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Raman H, Wu H, Lemerle D, Burrows G, Stanton R (2012) Development of SSR markers for menetic analysis of silverleaf nightshade (Solanum elaeagnifolium) and related species. Plant Mol Biol Report: 1–7. doi:10.1007/s11105-012-0473-z

Download references

Acknowledgements

We thank James Schmierer for his help in sample collection in the Ford Forestry Center and Dr. Andrew Hipp for providing Q. ellipsoidalis, Q. coccinea and Q. velutina samples. Additionally, we thank John Lampereur and Linda Parker for kindly guiding us to Q. rubra stands in the Nicolet-Chequamegon National Forest. We are also grateful to Erin Hickey who assisted in sample collection and marker analyses. Two anonymous referees provided helpful comments on an earlier draft. Funding for the study came from Michigan Technological University start-up funds to Oliver Gailing, the Michigan Technological University Research Excellence fund, the USDA McIntire Stennis fund, the Huron Mountain Wildlife Foundation, the Hanes Trust and the NSF Plant Genome Research program (NSF 1025974). We are also grateful to the Northern Institute of Applied Climate Science for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gailing.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, A.R., Lind, J.F., McCleary, T.S. et al. Development and Characterization of Genomic and Gene-Based Microsatellite Markers in North American Red Oak Species. Plant Mol Biol Rep 31, 231–239 (2013). https://doi.org/10.1007/s11105-012-0495-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0495-6

Keywords

Navigation