Skip to main content
Log in

TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The regulation of plant signalling responses by Mitogen-Activated Protein Kinases (MAPKs)-mediated protein phosphorylation is well recognized. MAP kinase phosphatases (MKPs) are negative regulators of MAPKs in eukaryotes. We report here the identification and the characterization of TMKP1, the first wheat MKP (Triticum turgidum L. subsp. Durum). Expression profile analyses performed in two durum wheat cultivars showing a marked difference in salt and drought stress tolerance, revealed a differential regulation of TMKP1. Under salt and osmotic stress, TMKP1 is induced in the sensitive wheat variety and repressed in the tolerant one. A recombinant TMKP1 was shown to be an active phosphatase and capable to interact specifically with two wheat MAPKs (TMPK3 and TMPK6). In BY2 tobacco cells transiently expressing GFP::TMKP1, the fusion protein was localized into the nucleus. Interestingly, the deletion of the N-terminal non catalytic domain results in a strong accumulation of the truncated fusion protein in the cytoplasm. In addition, when expressed in BY2 cells, TMPK3 and TMPK6 fused to red fluorescent protein (RFP) were shown to be present predominantly in the nucleus. Surprisingly, when co-expressed with the N-terminal truncated TMKP1 fusion protein; both kinases are excluded from the nuclear compartment and accumulate in the cytoplasm. This strongly suggests that TMKP1 interacts in vivo with TMPK3 and TMPK6 and controls their subcellular localization. Taken together, our results show that the newly isolated wheat MKP might play an active role in modulating the plant cell responses to salt and osmotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal GB, Iwahashi H, Rakwal R (2003) Rice MAPKs. Biochem Biophys Res Commun 302:171–180

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Bartels S, Anderson J, Gonzalez Besteiro MA, Carreri A, Hirt H, Buchala A, Metraux J-P, Peck SC, Ulm R (2009) Map kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Amara I, Feki K, Hanin M, Khoudi H, Masmoudi K (2008) Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L.subsp.Durum[Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31:145–154

    Article  Google Scholar 

  • Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1265

    Article  CAS  PubMed  Google Scholar 

  • Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14:6–16

    CAS  PubMed  Google Scholar 

  • Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2005) Identification and characterization of gene sequences expressed in wheat spikelets at the heading stage. Gene 346:221–230

    Article  CAS  PubMed  Google Scholar 

  • Cyert MS (2001) Regulation of nuclear localization during signaling. J Biol Chem 276:20805–20808

    Article  CAS  PubMed  Google Scholar 

  • Del pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    Article  CAS  PubMed  Google Scholar 

  • Duerr B, Gawienowski M, Ropp T, Jacobs T (1993) MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 5:87–96

    Article  CAS  PubMed  Google Scholar 

  • Ebisuya M, Kondoh K, Nishida E (2005) The duration magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signalling specificity. J Cell Sci 118:2997–3002

    Article  CAS  PubMed  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA. Trends Plants Sci 12:343–351

    Article  CAS  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signalling pathways induced by systemin, oligosaccharide elicitors and ultraviolet radiation at the level of mitogen—activated protein kinases in Lycopersicon peruvianum suspension—cultured cells. Plant Physiol 132:1728–1738

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Janski N, Herzog E, Schmit AC (2008) Identification of a novel small Arabidopsis protein interacting with gamma-tubulin complex protein 3. Cell Biol Int 32:546–548

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Páy A, Bögre L, Hirt H, Heberle-Bors E (1993) The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J 3:611–617

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Ökrész L, Bögre LH (2002) Complexity, crosstalk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kao YL, Deavours BE, Phelps KK, Walker RA, Reddy AS (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/Calmodulin. Biochem Biophys Res Commun 267:201–207

    Article  CAS  PubMed  Google Scholar 

  • Katou S, Karita E, Yamakawa H, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2005) Catalytic activation of the plant MAPK phosphatase NtMKP1 by its physiological substrate salicylic acid-induced protein kinase but not by calmodulins. J Biol Chem 280:39569–39581

    Article  CAS  PubMed  Google Scholar 

  • Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamasaki M, Miyao A, Hirochika H, Ohashi Y (2007) A calmoudilin—binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48:332–344

    Article  CAS  PubMed  Google Scholar 

  • Keyse SM (2000) Protein phosphatases and the regulation of mitogen—activated protein-kinase signalling. Curr Opin Cell Biol 12:186–192

    Article  CAS  PubMed  Google Scholar 

  • Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Kristensson MA, Andersson T (2005) Protein phosphatase 2A regulates apoptosis in neutrophils by dephosphorylating both p38 MAPK and its substrate caspase 3. J Biol Chem 280:6238–6244

    Article  Google Scholar 

  • Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D (2003) Mitogen—activated protein kinases play an essential role in oxidative burst—independent expression of pathogenesis-related genes in parsley. J Biol Chem 278:2256–2264

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochia H, Kuchitsu K (2005) Identification of a putative voltage—gated Ca2 + channel as a key regulator of elicitor—induced hypersensitive cell death and mitogen—activated protein kinase activation in rice. Plant J 42:798–809

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski DJ (1999) Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol 1:103–108

    Article  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase MKP2 positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 mitogen-activated protein kinases. J Biol Chem 282:25020–25029

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Milborrow BV (1997) Endogenous biosynthetic precursors of (+)—abscisic acid: IV. Biosynthetic of ABA from [2Hn] carotenoids by a cell-free system from avocado. Aust J Plant Physiol 24:715–726

    Article  CAS  Google Scholar 

  • Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS (2008) Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 29:23581–23588

    Article  Google Scholar 

  • Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, Liu Y (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 21:8213–8224

    Article  CAS  PubMed  Google Scholar 

  • Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K (2005) A sphingolipid elicitor—inducible mitogen—activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G—protein in rice. Plant Physiol 138:1644–1652

    Article  CAS  PubMed  Google Scholar 

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–303

    Article  CAS  PubMed  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Hayashida N, Yamaguchi-Shinosaki K, Kamada H, Shinosaki K (1993) ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett 336:440–444

    Article  CAS  PubMed  Google Scholar 

  • Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phyt 151:67–89

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the ‘HeLa’ cells in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Lenormand P (2003) Fidelity and spatio-temporal control in MAP Kinase (ERKs) signalling. Eur J Biochem 270:3291–3299

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569–3572

    Article  CAS  PubMed  Google Scholar 

  • Rudd JJ, Keon J, Hammond-Kosack KE (2008) The wheat mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiol 147:802–815

    Article  CAS  PubMed  Google Scholar 

  • Schweighofer A, Meskiene I (2008) Protein phosphatases in plant growth signalling pathways. Plant Cell Monogr 10:277–297

    Article  CAS  Google Scholar 

  • Seo S, Sano H, Ohashi Y (1999) Jasmonate–based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant cell 11:289–298

    Article  CAS  PubMed  Google Scholar 

  • Stafstrom JP, Altschuler M, Anderson DH (1993) Molecular cloning and expression of a MAP kinase homolog from pea. Plant Mol Biol 22:83–90

    Article  CAS  PubMed  Google Scholar 

  • Takezawa D (1999) Elicitor-and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat. Plant Mol Biol 40:921–933

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signalling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signalling cascades. Curr Opin Plant Biol 4:392–400

    Article  CAS  PubMed  Google Scholar 

  • Theodosiou A, Ashworth A (2002) MAP kinase phosphatases. Genome Biol 3:1–10

    Article  Google Scholar 

  • Ulm R, Revenkova E, di Sansebastiano G-P, Bechtold N, Paszkowski J (2001) Mitogen—activated protein phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699–709

    Article  CAS  PubMed  Google Scholar 

  • Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAPKinase phosphatase 1. EMBO J 21:6483–6493

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors E (1993) Isolation and characterisation of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol Biol 23:543–551

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid—inducible mitogen—activated protein kinase. Plant cell 15:745–759

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2004) Plant MAPK phosphatase interacts with calmodulins. J Biol Chem J 279:928–936

    Article  CAS  Google Scholar 

  • Yoo JH, Cheong MS, Park CY, Moon BC, Kim MC, Kang YH, Park HC, Choi MS, Lee JH, Jung WY, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2004) Regulation of the dual specificity protein phosphatase, DsPTP1, through interactions with calmodulin. J Biol Chem 279:848–858

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signalling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shin Takeda and Laurent Pieuchot for their technical help and Daisuke Takezawa for providing the plasmid pGST-WCK-1. This work was supported by grants from the Ministry of Higher Education, Scientific Research and Technology, Tunisia and la Coopération Tuniso-Française DGRS/CNRS 07/R 09-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Hanin.

Additional information

Chantal Ebel and Majdi Touzri have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaïdi, I., Ebel, C., Touzri, M. et al. TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73, 325–338 (2010). https://doi.org/10.1007/s11103-010-9617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9617-4

Keywords

Navigation