Skip to main content
Log in

Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity is one of the severest environmental stresses affecting plant productivity. In many plant species, salt sensitivity is associated with the accumulation of sodium (Na+) in photosynthetic tissues. Here, we provide the physiological and molecular analyses of seedlings of two Tunisian durum wheat genotypes (Triticum turgidum L. subsp. Durum [Desf.]), Mahmoudi (salt sensitive) and Om Rabia3 (salt tolerant). Na+ and K+ contents in leaf sheath from Om Rabia3 were significantly higher than those of Mahmoudi. However, the net uptake of Na+ from the soil occurred at similar rates in both varieties, suggesting that Om Rabia3 has much stronger ability to limit Na+ flux from roots to leaf blades. This mechanism could be explained by a capacity of Om Rabia3 to retain higher Na+ concentration in leaf sheath and unload less Na+ from the xylem to the upper shoots. When treated with 100 mM NaCl leaf sheaths of Om Rabia3 developed lower water potentials and a higher relative water contents than those of Mahmoudi. These features may arise from enhanced osmotic adjustment in Om Rabia3. Measurements of stomatal conductance, free proline and chlorophyll content also indicate that Om Rabia3 is better adapted to tolerate high salt than Mahmoudi. A correlation was obtained between the expression pattern of TaSOS1 (a plasma membrane Na+/H+ antiporter) in the roots and sheaths of both wheat varieties and the Na+ fluxes from roots to leaves. TaSOS1 transcript accumulated in Mahmoudi than in Om Rabia3, suggesting repression of TaSOS1 in the tolerant variety that reduces loading of Na+ to the upper shoots. These results help to design new genetic screens for salt tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Ben Naceur M, Ben Salem M, Rahmoune C, Chorfi A, El Jaafari S, Paul R (1998) Effet comparé du comportement de quelques variétés anciennes et quelques variétés nouvelles de blé dur (Triticum durum Desf.), sous contrainte hydrique. Ann INRAT 71:251–273

    Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant 5(6):241–246

    Article  CAS  Google Scholar 

  • Brini F, Gaxiola R, Berkowitz G, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354

    PubMed  CAS  Google Scholar 

  • Brini F, Hanin M, Mezghanni I, Berkowitz G, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58(2):301–308

    Article  PubMed  CAS  Google Scholar 

  • Cayuela E, Esta MT, Parra M, Caro M, Bolarin MC (2001) NaCl pre-treatment at the seedling stage enhances fruit yield of tomato irrigated with salt water. Plant Soil 230:231–238

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59(10):2697–2706

    Article  PubMed  CAS  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Santa Maria G, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 2:448–454

    Article  Google Scholar 

  • Dvořák J, Noamam MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87:872–877

    Article  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants. Principles and perspectives. Willey, New York

    Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498

    Article  PubMed  CAS  Google Scholar 

  • Gorham J, Wyn Jones RG, Bristol A (1990) Partial characterization of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta 180:590–597

    Article  CAS  Google Scholar 

  • Gunasekera D, Berkowitz GA (1992) Evaluation of contrasting cellular-level acclimation responses to leaf water deficits in three wheat genotypes. Plant Sci 86:1–12

    Article  Google Scholar 

  • Gupta SA, Berkowitz GA (1987) Osmotic adjustement, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 89:1040–1047

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Huang Sh, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Husain S, Munns R, Condon AG (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aust J Agric Res 54:589–597

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • James RA, Davenport R, Munns R (2006) Physiological characterisation of two genes for Na+ exclusion in wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Mornhinweg DW, Ferris DM, Heithol JJ (1987) Leaf photosynthesis and conductance of selected Triticum species at different water potentials. Plant Physiol 83:1014–1017

    Article  PubMed  Google Scholar 

  • Kennedy BF, De Filippis LF (1999) Physiological and oxidative response to NaCl of the salt tolerant Grevillea arenaria. J Plant Physiol 155:746–754

    CAS  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J 16(6):681–687

    Article  PubMed  CAS  Google Scholar 

  • Kocheva KV, Giorgiev GI (2008) Changes in foliar proline concentration of osmotically stressed barley. Z Naturforsh [C] 63(1–2):101–104

    CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1) a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • Mac Kinney G (1941) Spectrophotometric determination of plants pigments. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Aust J Agric Res 35:299–319

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    Article  CAS  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agric Res 54:627–635

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA 22 98(11):6233–6240

    Google Scholar 

  • Radin JW (1983) Physiological consequences of cellular water deficits: Osmotic adjustment. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitation of efficient water use in crop production. Am Soc Agron 227–288

  • Rawson HM, Richards SA, Munns R (1988) An examination of selection criteria for salt tolerance in wheat. Aust J Agric Res 39:759–772

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP (2000) Using stable isotope natural abundances (delta 15 N and delta 13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. J Exp Bot 51(342):41–50

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High–affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Rus A, Lee BH, Munnoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  PubMed  CAS  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the triticeae: the contribution of the D-genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    Article  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 22; 277 (5329): 1063–1066

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473:8–15

    PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Higher Education, Scientific Research and Technology, Tunisia. Authors would like to thank Doctor Karim Ben Hamed and Professor Chedly Abdelly for their help with ions analysis and Professor Ahmed Rebaï for statistical analysis. Authors are also grateful to Professor Mark Tester for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faïçal Brini.

Additional information

Communicated by M. B. Jackson.

F. Brini and I. Amara have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brini, F., Amara, I., Feki, K. et al. Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31, 145–154 (2009). https://doi.org/10.1007/s11738-008-0215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0215-x

Keywords

Navigation