Skip to main content
Log in

Liposomal Nanoparticles Control the Uptake of Ciprofloxacin Across Respiratory Epithelia

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Liposomal ciprofloxacin nanoparticles were developed to overcome the rapid clearance of antibiotics from the lungs. The formulation was evaluated for its release profile using an air interface Calu-3 cell model and further characterised for aerosol performance and antimicrobial activity.

Methods

Liposomal and free ciprofloxacin formulations were nebulised directly onto Calu-3 bronchial epithelial cells placed in an in vitro twin-stage impinger (TSI) to assess the kinetics of release. The aerosol performance of both the liposomal and free ciprofloxacin formulation was characterised using the next generation impactor. Minimum inhibitory and bactericidal concentrations (MICs and MBCs) were determined and compared between formulations to evaluate the antibacterial activity.

Results

The liposomal formulation successfully controlled the release of ciprofloxacin in the cell model and showed enhanced antibacterial activity against Pseudomonas aeruginosa. In addition, the formulation displayed a respirable aerosol fraction of 70.5 ± 2.03% of the emitted dose.

Conclusion

Results indicate that the in vitro TSI air interface Calu-3 model is capable of evaluating the fate of nebulised liposomal nanoparticle formulations and support the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr. 2007;19:83.

    Article  PubMed  Google Scholar 

  2. Barker AF. Bronchiectasis. N Engl J Med. 2002;346:1383–93.

    Article  PubMed  Google Scholar 

  3. Geller DE. Aerosol antibiotics in cystic fibrosis. Respiratory Care. 2009;54:658–70.

    Article  PubMed  Google Scholar 

  4. Barker AF, Couch L, Fiel SB, Gotfried MH, Ilowite J, Meyer KC, O'Donnel A, Sahn SA, Smith LJ, Steward JO. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162:481–5.

    PubMed  CAS  Google Scholar 

  5. Scheinbergand P, Shore E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis*. Chest. 2005;127:1420.

    Article  Google Scholar 

  6. Rubin BK. Aerosolized antibiotics for non-cystic fibrosis bronchiectasis. J Aerosol Med Pulm Drug Delivery. 2008;21:71–6.

    Article  CAS  Google Scholar 

  7. Gubernator J, Drulis-Kawa Z, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Lett Drug Des Discovery. 2007;4:297–304.

    Article  CAS  Google Scholar 

  8. Drulis-Kawaand Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm. 2010;387:187–98.

    Article  Google Scholar 

  9. Bakker-Woudenberg IAJM, ten Kate MT, Guo L, Working P, Mouton JW. Improved efficacy of ciprofloxacin administered in polyethylene glycol-coated liposomes for treatment of Klebsiella pneumoniae pneumonia in rats. Antimicrob Agents Chemother. 2001;45:1487.

    Article  PubMed  CAS  Google Scholar 

  10. Wong JP, Yang H, Blasetti KL, Schnell G, Conley J, Schofield LN. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J Controlled Release. 2003;92:265–73.

    Article  CAS  Google Scholar 

  11. Yim D, Blanchard JD, Mudumba S, Eastman S, Manda K, Redelmeier T, Farr SJ. The development of inhaled liposome-encapsulated ciprofloxcin to treat cystic fibrosis. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, editors. Respiratory drug delivery X, vol. 2. River Grove: Davis Healthcare Int'l Publishing LCC; 2006. p. 425–8.

    Google Scholar 

  12. Bruinenberg P, Blanchard JD, Cipolla DC, Dayton F, Mudumba S, Gonda I. Inhaled liposomal ciprofloxain: once a day management of respiratory infections. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, editors. Respiratory drug delivery, vol. 1. River Grove: Davis Healthcare International Publishing; 2010.

    Google Scholar 

  13. Ehrhardt C, Fiegel J, Fuchs S, Abu-Dahab R, Schaefer U, Hanes J, Lehr CM. Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J Aerosol Med. 2002;15:131–9.

    Article  PubMed  CAS  Google Scholar 

  14. Steimer A, Haltner E, Lehr CM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med. 2005;18:137–82.

    Article  PubMed  CAS  Google Scholar 

  15. Ong HX, Traini D, Bebawy M, Young PM. Epithelial profiling of antibiotic controlled release respiratory formulations. Pharm Res. 2011;28:2327–38.

    Article  PubMed  CAS  Google Scholar 

  16. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23:1482–90.

    Article  PubMed  CAS  Google Scholar 

  17. Cavet ME, West M, Simmons NL. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob Agents Chemother. 1997;41:2693.

    PubMed  CAS  Google Scholar 

  18. Grainger C, Greenwell L, Martin G, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm. 2009;71:318–24.

    Article  PubMed  CAS  Google Scholar 

  19. Haghi M, Young PM, Traini D, Jaiswal R, Gong J, Bebawy M. Time-and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36:1207–14.

    Article  PubMed  CAS  Google Scholar 

  20. Ehrhardt C, Kneuer C, Bies C, Lehr CM, Kim KJ, Bakowsky U. Salbutamol is actively absorbed across human bronchial epithelial cell layers. Pulm Pharmacol Ther. 2005;18:165.

    Article  PubMed  CAS  Google Scholar 

  21. Webb MS, Boman NL, Wiseman DJ, Saxon D, Sutton K, Wong KF, Logan P, Hope MJ. Antibacterial efficacy against an in vivo Salmonella typhimurium infection model and pharmacokinetics of a liposomal ciprofloxacin formulation. Antimicrob Agents Chemother. 1998;42:45.

    PubMed  CAS  Google Scholar 

  22. Cipolla DC, Dayton F, Fulzale S, Gabatan E, Mudumba S, Yim D, Wu H, Zwilinski R. Inhaled liposomal ciprofloxacin: In vitro properties and aerosol performance. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery, vol. 2. River Grove: Davis Healthcare Int'l Publishing; 2010. p. 409–14.

    Google Scholar 

  23. Vecellio None L, Grimbert D, Becquemin M, Boissinot E, Le Pape A, LemariÈ E, Diot P. Validation of laser diffraction method as a substitute for cascade impaction in the European Project for a Nebulizer Standard. J Aerosol Med. 2001;14:107–14.

    Article  PubMed  CAS  Google Scholar 

  24. Dumouchel C, Yongyingsakthavorn P, Cousin J. Light multiple scattering correction of laser-diffraction spray drop-size distribution measurements. Int J Multiphase Flow. 2009;35:277–87.

    Article  CAS  Google Scholar 

  25. Pharmacopoeia British. Consistency of Formulated Preparations, vol. 5. London: HMSO; 2011.

    Google Scholar 

  26. Chan JGY, Kwok PCL, Young PM, Chan H-K, Traini D. Mannitol delivery by vibrating mesh nebulisation for enhancing mucociliary clearance. J Pharm Sci. 2011;100:2693–702.

    Article  PubMed  CAS  Google Scholar 

  27. National Committee for Clinical Laboratory Standards. Tests to assess bactericidal activity: approved standard M2-A6. Wayne: NCCLS; 1996.

    Google Scholar 

  28. Meers P, Neville M, Malinin V, Scotto A, Sardaryan G, Kurumunda R, Mackinson C, James G, Fisher S, Perkins W. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61:859.

    Article  PubMed  CAS  Google Scholar 

  29. Cipolla DC, Redelmeier T, Eastman S, Bruinenberg P, Gonda I. Liposomes, niosomes and proniosomes - a critical update of their (commercial) development as inhaled products. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery Europe 2011. Rover Grove: Davis Healthcare Int'l Publishing; 2010. p. 41–54.

    Google Scholar 

  30. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69:1–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zieglerand J, Wachtel H. Comparison of cascade impaction and laser diffraction for particle size distribution measurements. J Aerosol Med. 2005;18:311–24.

    Article  Google Scholar 

  32. Clark AR. The use of laser diffraction for the evaluation of the aerosol clouds generated by medical nebulizers. Int J Pharm. 1995;115:69–78.

    Article  Google Scholar 

  33. Bruinenberg P, Serisier D, Cipolla DC, Blanchard JD. Safety, tolerability, pharmacokinetics and antimicrobial activity of inhaled liposomal ciprofloxacin formulations in humans. Pediatr Pulm. 2010;45:354, #377.

    Google Scholar 

  34. Mugabe C, Halwani M, Azghani AO, Lafrenie RM, Omri A. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:2016–22.

    Article  PubMed  CAS  Google Scholar 

  35. Furneri PM, Fresta M, Puglisi G, Tempera G. Ofloxacin-loaded liposomes: in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother. 2000;44:2458.

    Article  PubMed  CAS  Google Scholar 

  36. Jia Y, Joly H, Omri A. Characterization of the interaction between liposomal formulations and Pseudomonas aeruginosa. J Liposome Res. 2010;20:134–46.

    Article  PubMed  CAS  Google Scholar 

  37. Hancock REW. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998;27:S93.

    Article  PubMed  CAS  Google Scholar 

  38. Woodruff W, Parr Jr T, Hancock R, Hanne L, Nicas T, Iglewski B. Expression in Escherichia coli and function of Pseudomonas aeruginosa outer membrane porin protein F. J Bacteriol. 1986;167:473.

    PubMed  CAS  Google Scholar 

  39. Lohnerand K, Prenner EJ. Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1999;1462:141–56.

    Article  Google Scholar 

  40. Hopeand MJ, Wong KF. Liposomal formulation of ciprofloxacin. In: Shek PN, editor. Liposomes in biomedical applications. Germany: Harwood Academic Publishers; 1995. p. 121–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, H.X., Traini, D., Cipolla, D. et al. Liposomal Nanoparticles Control the Uptake of Ciprofloxacin Across Respiratory Epithelia. Pharm Res 29, 3335–3346 (2012). https://doi.org/10.1007/s11095-012-0827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0827-0

KEY WORDS

Navigation