Skip to main content

Advertisement

Log in

Epithelial Profiling of Antibiotic Controlled Release Respiratory Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Release profiles of two ciprofloxacin hydrochloride formulations for the treatment of respiratory infection were evaluated using different in vitro methodologies and characterised for aerosol performance and toxicity.

Methods

Spray-dried ciprofloxacin and ciprofloxacin spray-dried with polyvinyl alcohol as a controlled release (CR) agent at a 50:50 w/w ratio were formulated and physico-chemically characterised. Aerosol performances were assessed in vitro using a liquid impinger. Drug release was performed using a modified Franz cell and a validated air interface Calu-3-modified twin stage impinger (TSI). Ciprofloxacin toxicity was also established in vitro.

Results

Both formulations had a similar size distribution, while CR ciprofloxacin had superior aerosol performance and stability. The release profiles showed the CR formulation to have a higher transport rate compared to ciprofloxacin alone in the cell model. Contrary results were observed using the diffusion cell. Results suggest that the air interface cell model provides a more physiologically relevant model than the modified Franz cell. Toxicity analysis showed that the lung epithelial cells could tolerate a wide range of ciprofloxacin concentrations.

Conclusions

This study establishes that the in vitro modified TSI air interface Calu-3 model is capable of evaluating the fate of inhaled powder formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv. 2009;6(9):897–905.

    Article  PubMed  CAS  Google Scholar 

  2. Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr. 2007;19(1):83–8.

    Article  PubMed  Google Scholar 

  3. Adi H, Young PM, Chan H-K, Salama R, Traini D. Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm. 2010;36(1):119–26.

    Article  CAS  Google Scholar 

  4. Salama RO, Traini D, Chan H-K, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  5. Widdicombe JH. Regulation of the depth and composition of airway surface liquid. J Anat. 2002;201(4):313–8.

    Google Scholar 

  6. Salama R, Ladd L, Chan H-K, Traini D, Young P. Development of an ovine dry powder inhalation model for the evaluation of conventional and controlled release microparticles. AAPS J. 2009;11(3):465–8.

    Article  PubMed  CAS  Google Scholar 

  7. Haghi M, Young PM, Traini D, Jaiswal R, Gong J, Bebawy M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36:1207–14.

    Article  PubMed  CAS  Google Scholar 

  8. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B, Grainger CI, et al. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23(7):1482–90. Comparative Study Research Support, Non-U.S. Gov’t.

    Article  PubMed  CAS  Google Scholar 

  9. Bur M, Lehr CM, Bur M, Lehr C-M. Pulmonary cell culture models to study the safety and efficacy of innovative aerosol medicines. Expert Opin Drug Deliv. 2008;5(6):641–52. Research Support, Non-U.S. Gov’t Review.

    Article  PubMed  CAS  Google Scholar 

  10. Cavet M, West M, Simmons N. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob Agents Chemother. 1997;41(12):2693–8.

    PubMed  CAS  Google Scholar 

  11. Ehrhardt C, Kneuer C, Bies C, Lehr C-M, Kim K-J, Bakowsky U. Salbutamol is actively absorbed across human bronchial epithelial cell layers. Pulm Pharmacol Ther. 2005;18(3):165–70. Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.

    Article  PubMed  CAS  Google Scholar 

  12. Fiegel J, Ehrhardt C, Schaefer UF, Lehr C-M, Hanes J. Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lung. Pharm Res. 2003;20(5):788–96.

    Article  PubMed  CAS  Google Scholar 

  13. Mathias NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall DA. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitroin vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10(1):31–40.

    Article  CAS  Google Scholar 

  14. Yan Z, Aaron C, Thomas H. Cultured human airway epithelial cells (Calu-3): a model of human respiratory function, structure, and inflammatory responses. Crit Care Res Pract. 2010;2010

  15. Grainger CI, Greenwell LL, Martin GP, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Sci. 2009;71(2):318–24.

    CAS  Google Scholar 

  16. Moazeni E, Gilani K, Sotoudegan F, Pardakhty A, Najafabadi AR, Ghalandari R, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul. 2010;27(7):618–27.

    Article  PubMed  CAS  Google Scholar 

  17. Adi H, Young PM, Chan H, Stewart P, Agus H, Traini D. Cospray dried antibiotics for dry powder lung delivery. J Pharm Sci. 2007

  18. Yamamoto A, Yamada K, Muramatsu H, Nishinaka A, Okumura S, Okada N, et al. Control of pulmonary absorption of water-soluble compounds by various viscous vehicles. Int J Pharm. 2004;282(1–2):141–9.

    Article  PubMed  CAS  Google Scholar 

  19. Salama RO, Traini D, Chan HK, Sung A, Ammit AJ, Young PM. Preparation and evaluation of controlled release microparticles for respiratory protein therapy. J Pharm Sci. 2009;98(8):2709–17.

    Article  PubMed  CAS  Google Scholar 

  20. Salama R, Hoe S, Chan H-K, Traini D, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 1: influence of polymer concentration on physical and in vitro characteristics. Eur J Pharm Biopharm. 2008;69(2):486–95.

    Article  PubMed  CAS  Google Scholar 

  21. Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Investig Dermatol. 1975;64(3):190–5.

    Article  PubMed  CAS  Google Scholar 

  22. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64–74.

    Google Scholar 

  23. Adi S, Adi H, Tang P, Traini D, Chan H-K, Young PM. Micro-particle corrugation, adhesion and inhalation aerosol efficiency. Eur J Pharm Sci. 2008;35(1–2):12–8.

    Article  PubMed  CAS  Google Scholar 

  24. Chew NYK, Tang P, Chan H-K, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52.

    Article  PubMed  CAS  Google Scholar 

  25. Yang Y, Tsifansky MD, Wu CJ, Yang HI, Schmidt G, Yeo Y. Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res. 2010;27(1):151–60.

    Article  PubMed  CAS  Google Scholar 

  26. Sweeney LG, Wang Z, Loebenberg R, Wong JP, Lange CF, Finlay WH. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm. 2005;305(1–2):180–5.

    Article  PubMed  CAS  Google Scholar 

  27. Administration FaD. Guidance for industry; dissolution testing of immediate release solid oral dosage forms. August 1997

  28. Polli JE, Rekhi GS, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86(6):690–700.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Michael Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, H.X., Traini, D., Bebawy, M. et al. Epithelial Profiling of Antibiotic Controlled Release Respiratory Formulations. Pharm Res 28, 2327–2338 (2011). https://doi.org/10.1007/s11095-011-0462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0462-1

KEY WORDS

Navigation