Skip to main content
Log in

DNA Delivery to Mitochondria: Sequence Specificity and Energy Enhancement

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Mitochondria are competent for DNA uptake in vitro, a mechanism which may support delivery of therapeutic DNA to complement organelle DNA mutations. We document here key aspects of the DNA import process, so as to further lay the ground for mitochondrial transfection in intact cells.

Methods

We developed DNA import assays with isolated mitochondria from different organisms, using DNA substrates of various sequences and sizes. Further import experiments investigated the possible role of ATP and protein phosphorylation in the uptake process. The fate of adenine nucleotides and the formation of phosphorylated proteins were analyzed.

Results

We demonstrate that the efficiency of mitochondrial uptake depends on the sequence of the DNA to be translocated. The process becomes sequence-selective for large DNA substrates. Assays run with a natural mitochondrial plasmid identified sequence elements which promote organellar uptake. ATP enhances DNA import and allows tight integration of the exogenous DNA into mitochondrial nucleoids. ATP hydrolysis has to occur during the DNA uptake process and might trigger phosphorylation of co-factors.

Conclusions

Our data contribute critical information to optimize DNA delivery into mitochondria and open the prospect of targeting whole mitochondrial genomes or complex constructs into mammalian organelles in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bp:

base-pair

BSA:

bovine serum albumin

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DEAE-cellulose:

diethylaminoethyl-cellulose

EDTA:

ethylenediamine tetraacetic acid

EGTA:

ethylene glycol tetraacetic acid

kb:

kilobase-pair

mtDNA:

mitochondrial DNA

OXPHOS:

oxidative phosphorylation

PCR:

polymerase chain reaction

PEI-cellulose:

polyethylenimine-cellulose

PMSF:

phenylmethylsulfonyl fluoride

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TLC:

thin-layer chromatography

REFERENCES

  1. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797:113–28.

    PubMed  CAS  Google Scholar 

  2. Bonnefoy N, Remacle C, Fox TD. Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol. 2007;80:525–48.

    Article  PubMed  CAS  Google Scholar 

  3. Zhou J, Liu L, Chen J. Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell. 2010;9:806–14.

    Article  PubMed  CAS  Google Scholar 

  4. Kyriakouli DS, Boesch P, Taylor RW, Lightowlers RN. Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Ther. 2008;15:1017–23.

    Article  PubMed  CAS  Google Scholar 

  5. Koulintchenko M, Konstantinov Y, Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 2003;22:1245–54.

    Article  PubMed  CAS  Google Scholar 

  6. Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet. 2006;15:143–54.

    Article  PubMed  CAS  Google Scholar 

  7. Weber-Lotfi F, Ibrahim N, Boesch P, Cosset A, Konstantinov Y, Lightowlers RN, et al. Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim Biophys Acta. 2009;1787:320–7.

    Article  PubMed  CAS  Google Scholar 

  8. Placido A, Gagliardi D, Gallerani R, Grienenberger JM, Maréchal-Drouard L. Fate of a larch unedited tRNA precursor expressed in potato mitochondria. J Biol Chem. 2005;280:33573–9.

    Article  PubMed  CAS  Google Scholar 

  9. Boesch P, Ibrahim N, Paulus F, Cosset A, Tarasenko V, Dietrich A. Plant mitochondria possess a short-patch base excision DNA repair pathway. Nucleic Acids Res. 2009;37:5690–700.

    Article  PubMed  CAS  Google Scholar 

  10. Boesch P, Ibrahim N, Dietrich A, Lightowlers RN. Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria. Nucleic Acids Res. 2010;38:1478–88.

    Article  PubMed  CAS  Google Scholar 

  11. Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res. 2011; doi:10.1093/nar/gkr517.

  12. Katrangi E, D’Souza G, Boddapati SV, Kulawiec M, Singh KK, Bigger B, et al. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res. 2007;10:561–70.

    Article  PubMed  Google Scholar 

  13. Rubino L, Burgyan J, Russo M. Molecular cloning and complete nucleotide sequence of Carnation Italian ringspot tombusvirus genomic and defective interfering RNAs. Arch Virol. 1995;140:2027–39.

    Article  PubMed  CAS  Google Scholar 

  14. Weber-Lotfi F, Dietrich A, Russo M, Rubino L. Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J Virol. 2002;76:10485–96.

    Article  PubMed  CAS  Google Scholar 

  15. Leon P, Walbot V, Bedinger P. Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucleic Acids Res. 1989;17:4089–99.

    Article  PubMed  CAS  Google Scholar 

  16. van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ. pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res. 1995;4:288–90.

    Article  PubMed  Google Scholar 

  17. Handa H, Itani K, Sato H. Structural features and expression analysis of a linear mitochondrial plasmid in rapeseed (Brassica napus L.). Mol Genet Genomics. 2002;267:797–805.

    Article  PubMed  CAS  Google Scholar 

  18. Neuburger M, Journet EP, Bligny R, Carde JP, Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982;217:312–23.

    Article  PubMed  CAS  Google Scholar 

  19. Heins L, Mentzel H, Schmid A, Benz R, Schmitz UK. Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem. 1994;269:26402–10.

    PubMed  CAS  Google Scholar 

  20. Meisinger C, Sommer T, Pfanner N. Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal Biochem. 2000;287:339–42.

    Article  PubMed  CAS  Google Scholar 

  21. Weinstock GM, McEntee K, Lehman IR. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Characterization of ATP hydrolysis. J Biol Chem. 1981;256:8829–34.

    PubMed  CAS  Google Scholar 

  22. Sato H, Saito C, Handa H. Mitochondrial DNA decreases during pollen development in rapeseed (Brassica napus L.), but mitochondrial linear-plasmid-encoded RNA polymerase persists in mature pollen. Protoplasma. 2004;224:179–85.

    Article  PubMed  CAS  Google Scholar 

  23. Turpen T, Garger SJ, Marks MD, Grill LK. Molecular cloning and physical characterization of a Brassica linear mitochondrial plasmid. Mol Gen Genet. 1987;209:227–33.

    Article  PubMed  CAS  Google Scholar 

  24. da Silva LP, Lindahl M, Lundin M, Baltscheffsky H. Protein phosphorylation by inorganic pyrophosphate in yeast mitochondria. Biochem Biophys Res Commun. 1991;178:1359–64.

    Article  PubMed  Google Scholar 

  25. Ito J, Taylor NL, Castleden I, Weckwerth W, Millar AH, Heazlewood JL. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics. 2009;9:4229–40.

    Article  PubMed  CAS  Google Scholar 

  26. Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release. 2007;121:125–36.

    Article  PubMed  CAS  Google Scholar 

  27. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res. 1998;15:334–7.

    Article  PubMed  CAS  Google Scholar 

  28. Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GG, Torchilin VP, Weissig V. Mitochondriotropic liposomes. J Liposome Res. 2005;15:49–58.

    PubMed  CAS  Google Scholar 

  29. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release. 2003;92:189–97.

    Article  PubMed  Google Scholar 

  30. D’Souza GG, Boddapati SV, Weissig V. Mitochondrial leader sequence–plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion. 2005;5:352–8.

    Article  PubMed  Google Scholar 

  31. Clark MA, Shay JW. Mitochondrial transformation of mammalian cells. Nature. 1982;295:605–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ber R, Stauver MG, Shay JW. Use of isolated mitochondria to transfer chloramphenicol resistance in hamster cells. Isr J Med Sci. 1984;20:244–8.

    PubMed  CAS  Google Scholar 

  33. Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ. Mitochondria transfer into mouse ova by microinjection. Transgenic Res. 1997;6:379–83.

    Article  PubMed  CAS  Google Scholar 

  34. Irwin MH, Johnson LW, Pinkert CA. Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgenic Res. 1999;8:119–23.

    Article  PubMed  CAS  Google Scholar 

  35. Takeda K, Tasai M, Akagi S, Matsukawa K, Takahashi S, Iwamoto M, et al. Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion. 2010;10:137–42.

    Article  PubMed  CAS  Google Scholar 

  36. Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life. 2010;62:19–32.

    PubMed  CAS  Google Scholar 

  37. Kaufman BA, Kolesar JE, Perlman PS, Butow RA. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J Cell Biol. 2003;163:457–61.

    Article  PubMed  CAS  Google Scholar 

  38. Bacman SR, Williams SL, Moraes CT. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009;37:4218–26.

    Article  PubMed  CAS  Google Scholar 

  39. Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009;18:1028–36.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We wish to thank Philippe Hammann for mass spectrometry analyses. The mitochondrial transfection project was funded by the French Centre National de la Recherche Scientifique (CNRS, UPR2357) through institutional funding and international cooperation programs, the Université de Strasbourg (UdS), the Agence Nationale de la Recherche (ANR-06-MRAR-037-02), the Welcome Trust, the Russian Academy of Sciences (RAS) and the Russian Foundation for Basic Research (RFBR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, N., Handa, H., Cosset, A. et al. DNA Delivery to Mitochondria: Sequence Specificity and Energy Enhancement. Pharm Res 28, 2871–2882 (2011). https://doi.org/10.1007/s11095-011-0516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0516-4

KEY WORDS

Navigation