Skip to main content

CRISPR-Cas9-Mediated Knock-In Approach to Insert the GFP11 Tag into the Genome of a Human Cell Line

  • Protocol
  • First Online:
Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2564))

Abstract

The protocol in this chapter describes a method to label endogenous proteins using a self-complementing split green fluorescent protein (split GFP1-10/11) in a human cell line. By directly delivering Cas9/sgRNA ribonucleoprotein (RNP) complexes through nucleofection, this protocol allows for the efficient integration of GFP11 into a specific genomic locus via CRISPR-Cas9-mediated homology-directed repair (HDR). We use the GFP11 sequence in the form of a single-stranded DNA (ssDNA) as an HDR template. Because the ssDNA with less than 200 nucleotides used here is commercially synthesized, this approach remains cloning-free. The integration of GFP11 is performed in cells stably expressing GFP1-10, thereby inducing fluorescence reconstitution. Subsequently, such a reconstituted signal is analyzed using fluorescence flow cytometry for estimating knock-in efficiencies and enriching the GFP-positive cell population. Finally, the enriched cells can be visualized using fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leroy H, Lee R (2013) The Human Genome Project: big science transforms biology and medicine. Genome Med 5:79

    Article  Google Scholar 

  2. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  Google Scholar 

  3. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb Protoc 2009:pdb.top64

    Article  Google Scholar 

  4. Lu W, Lakonishok M, Gelfand VI (2021) Gatekeeper function for Short stop at the ring canals of the Drosophila ovary. Curr Biol 31:3207–3220

    Article  CAS  Google Scholar 

  5. Sengupta P, Seo AY, Pasolli HA, Song YE, Johnson MC, Lippincott-Schwartz J (2019) A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat Cell Biol 21:452–461

    Article  CAS  Google Scholar 

  6. Gibson TJ, Seiler M, Veitia RA (2013) The transience of transient overexpression. Nat Methods 10:715–721

    Article  CAS  Google Scholar 

  7. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, Paschon DE, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Drubin DG (2011) Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 13:331–337

    Article  CAS  Google Scholar 

  8. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  Google Scholar 

  9. Roberts B, Haupt A, Tucker A, Grancharova T, Arakaki J, Fuqua MA, Nelson A, Hookway C, Ludmann SA, Mueller IA, Yang R, Horwitz R, Rafelski SM, Gunawardane RN (2017) Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 28:2854–2874

    Article  CAS  Google Scholar 

  10. Leonetti MD, Sekine S, Kamiyama D, Weissman JS, Huang B (2016) A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci U S A 113:3501–3508

    Article  Google Scholar 

  11. Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, Ishikawa H, Leonetti MD, Marshall WF, Weissman JS, Huang B (2016) Versatile protein tagging in cells with split fluorescent protein. Nat Commun 7:11046

    Article  CAS  Google Scholar 

  12. Feng S, Sekine S, Pessino V, Li H, Leonetti MD, Huang B (2017) Improved split fluorescent proteins for endogenous protein labeling. Nat Commun 8:370

    Article  Google Scholar 

  13. Feng S, Varshney A, Coto Villa D, Modavi C, Kohler J, Farah F, Zhou S, Ali N, Muller JD, Van Hoven MK, Huang B (2019) Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Commun Biol 2:344

    Article  Google Scholar 

  14. Zhou S, Feng S, Brown D, Huang B (2020) Improved yellow-green split fluorescent proteins for protein labeling and signal amplification. PLoS One 15:e0242592

    Article  CAS  Google Scholar 

  15. Tamura R, Jiang F, Xie J, Kamiyama D (2021) Multiplexed labeling of cellular proteins with split fluorescent protein tags. Commun Biol 4:257

    Article  CAS  Google Scholar 

  16. Chun W, Waldo GS, Johnson GV (2007) Split GFP complementation assay: a novel approach to quantitatively measure aggregation of tau in situ: effects of GSK3beta activation and caspase 3 cleavage. J Neurochem 103:2529–2539

    Article  CAS  Google Scholar 

  17. Koker T, Fernandez A, Pinaud F (2018) Characterization of split fluorescent protein variants and quantitative analyses of their self-assembly process. Sci Rep 8:5344

    Article  CAS  Google Scholar 

  18. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  CAS  Google Scholar 

  19. Sitron CS, Brandman O (2019) CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat Struct Mol Biol 26:450–459

    Article  CAS  Google Scholar 

  20. Kaser S, Willemin M, Schnarwiler F, Schimanski B, Poveda-Huertes D, Oeljeklaus S, Haenni B, Zuber B, Warscheid B, Meisinger C, Schneider A (2017) Biogenesis of the mitochondrial DNA inheritance machinery in the mitochondrial outer membrane of Trypanosoma brucei. PLoS Pathog 13:e1006808

    Article  Google Scholar 

  21. Inglis AJ, Page KR, Guna A, Voorhees RM (2020) Differential modes of orphan subunit recognition for the WRB/CAML complex. Cell Rep 30:3691–3698

    Article  CAS  Google Scholar 

  22. Park E, Lee HY, Woo J, Choi D, Dinesh-Kumar SP (2017) Spatiotemporal monitoring of Pseudomonas syringae effectors via type III secretion using split fluorescent protein fragments. Plant Cell 29:1571–1584

    Article  CAS  Google Scholar 

  23. Batan D, Braselmann E, Minson M, Nguyen DMT, Cossart P, Palmer AE (2018) A multicolor split-fluorescent protein approach to visualize listeria protein secretion in infection. Biophys J 115:251–262

    Article  CAS  Google Scholar 

  24. Li X, Zhu T, Tu H, Pan SQ (2020) Agrobacterium VirE3 uses its two tandem domains at the C-terminus to retain its companion VirE2 on the cytoplasmic side of the host plasma membrane. Front Plant Sci 11:464

    Article  Google Scholar 

  25. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766

    Article  Google Scholar 

  26. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2018) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  CAS  Google Scholar 

  27. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  CAS  Google Scholar 

  28. Lattanzi A, Meneghini V, Pavani G, Amor F, Ramadier S, Felix T, Antoniani C, Masson C, Alibeu O, Lee C, Porteus MH, Bao G, Amendola M, Mavilio F, Miccio A (2019) Optimization of CRISPR/Cas9 delivery to human hematopoietic stem and progenitor cells for therapeutic genomic rearrangements. Mol Ther 27:137–150

    Article  CAS  Google Scholar 

  29. Kagoya Y, Guo T, Yeung B, Saso K, Anczurowski M, Wang CH, Murata K, Sugata K, Saijo H, Matsunaga Y, Ohashi Y, Butler MO, Hirano N (2020) Genetic ablation of HLA Class I, Class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res 8:926–936

    Article  CAS  Google Scholar 

  30. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  31. Elegheert J, Behiels E, Bishop B, Scott S, Woolley RE, Griffiths SC, Byrne EFX, Chang VT, Stuart DI, Jones EY, Siebold C, Aricescu AR (2018) Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017

    Article  CAS  Google Scholar 

  32. Hung KL, Meitlis I, Hale M, Chen CY, Singh S, Jackson SW, Miao CH, Khan IF, Rawlings DJ, James RG (2018) Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol Ther 26:456–467

    Article  CAS  Google Scholar 

  33. Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney CM, Goodell MA, Nakada D (2016) Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep 17:1453–1461

    Article  CAS  Google Scholar 

  34. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112:10437–10442

    Article  CAS  Google Scholar 

  35. Wu W, Lu Z, Li F, Wang W, Qian N, Duan J, Zhang Y, Wang F, Chen T (2017) Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 114:1660–1665

    Article  CAS  Google Scholar 

  36. Modarai SR, Man D, Bialk P, Rivera-Torres N, Bloh K, Kmiec EB (2018) Efficient delivery and nuclear uptake is not sufficient to detect gene editing in CD34+ cells directed by a ribonucleoprotein complex. Mol Ther Nucleic Acids 11:116–129

    Article  CAS  Google Scholar 

  37. Dwivedi PP, Anderson PJ, Powell BC (2012) Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3. BMC Biotechnol 12:45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank all members of the Kamiyama lab for critical comments on the manuscript; we particularly thank Melissa Inal and Kathy Bui for helpful discussion. This work was supported by an NIH R01 NS107558 (R.T. and D.K.). Ryo Tamura was supported by the Nakajima Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Kamiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tamura, R., Kamiyama, D. (2023). CRISPR-Cas9-Mediated Knock-In Approach to Insert the GFP11 Tag into the Genome of a Human Cell Line. In: Sharma, M. (eds) Fluorescent Proteins. Methods in Molecular Biology, vol 2564. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2667-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2667-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2666-5

  • Online ISBN: 978-1-0716-2667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics