Skip to main content
Log in

Stability Kinetics of Influenza Vaccine Coated onto Microneedles During Drying and Storage

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study sought to determine the effects of microneedle coating formulation, drying time and storage time on antigen stability and in vivo immunogenicity of influenza microneedle vaccines.

Methods

The stability of inactivated influenza virus vaccine was monitored by hemagglutination (HA) activity and virus particle aggregation as a function of storage time and temperature with or without trehalose. In vivo immunogenicity of inactivated influenza vaccines coated onto microneedles was determined in mice by virus-specific antibody titers and survival rates.

Results

In the absence of trehalose, HA activity decreased below 10% and to almost zero after 1 h and 1 month of drying, respectively. Addition of trehalose maintained HA activity above 60% after drying and above 20% after 1 month storage at 25°C. Loss of HA activity generally correlated with increased virus particle aggregation. Administration of microneedles coated with trehalose-stabilized influenza vaccine yielded high serum IgG antibody titers even after 1 month storage, and all animals survived with minimal weight loss after lethal challenge infection.

Conclusions

Inactivated influenza virus vaccine coated on microneedles with trehalose significantly improved the HA activity as well as in vivo immunogenicity of the vaccine after an extended time of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Palese P. Influenza: old and new threats. Nat Med. 2004;10:S82–7.

    Article  CAS  PubMed  Google Scholar 

  2. Monto AS, Ohmit SE. Seasonal influenza vaccines: evolutions and future trends. Expert Rev Vaccines. 2009;8:383–9.

    Article  PubMed  Google Scholar 

  3. Cox NJ, Subbarao K. Influenza. Lancet. 1999;354:1277–82.

    Article  CAS  PubMed  Google Scholar 

  4. Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for immunology. Nat Immunol. 2006;7:449–55.

    Article  CAS  PubMed  Google Scholar 

  5. Nichol KL, Treanor JJ. Vaccines for seasonal and pandemic influenza. J Infect Dis. 2006;194:S111–8.

    Article  PubMed  Google Scholar 

  6. Bridges CB, Katz JM, Levandowski RA, Cox NJ. Inactivated influenza vaccines. In: Plotkin SA, Orenstein WA, Offit P, editors. Vaccines. Philadelphia: Saunders Elsevier; 2008. p. 259–90.

    Google Scholar 

  7. Raviv Y, Blumenthal R, Tompkins SM, Humberd J, Hogan RJ, Viard M. Hydrophobic inactivation of influenza viruses confers preservation of viral structure with enhanced immunogenicity. J Virol. 2008;82:4612–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kermode M. Unsafe injections in low-income country health settings: need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int. 2004;19:95–103.

    Article  PubMed  Google Scholar 

  9. Hamilton JG. Needle phobia—a neglected diagnosis. J Fam Pract. 1995;41:169–75.

    CAS  PubMed  Google Scholar 

  10. Drucker E, Alcabes PG, Marx PA. The injection century: massive unsterile injections and the emergence of human pathogens. Lancet. 2001;358:1989–92.

    Article  CAS  PubMed  Google Scholar 

  11. Weniger BG, Papania MJ. Alternative vaccine delivery methods. In: Plotkin SA, Orenstein WA, Offit P, editors. Vaccines. Philadelphia: Saunders Elsevier; 2008. p. 1357–92.

    Google Scholar 

  12. Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5:905–16.

    Article  CAS  PubMed  Google Scholar 

  13. Holland D, Booy R, De Looze F, Eizenberg P, McDonald J, Karrasch J et al. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis. 2008;198:650–8.

    Article  PubMed  Google Scholar 

  14. Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. N Engl J Med. 2004;351:2295–301.

    Article  CAS  PubMed  Google Scholar 

  15. Belshe RB. Current status of live attenuated influenza virus vaccine in the US. Virus Res. 2004;103:177–85.

    Article  CAS  PubMed  Google Scholar 

  16. Chen ZY, Santos C, Aspelund A, Gillim-Ross L, Jin H, Kemble G et al. Evaluation of live attenuated influenza A virus H6 vaccines in mice and ferrets. J Virol. 2009;83:65–72.

    Article  CAS  PubMed  Google Scholar 

  17. Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Enhanced memory responses to H1N1 influenza vaccination in the skin using vaccine coated-microneedles. J Infect Dis. 2010;201:190–8.

    Article  CAS  PubMed  Google Scholar 

  18. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93.

    Article  CAS  PubMed  Google Scholar 

  19. Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24:1653–64.

    Article  CAS  PubMed  Google Scholar 

  20. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117:227–37.

    Article  CAS  PubMed  Google Scholar 

  21. Koutsonanos DG, Martin MDP, Zarnitsyn VG, Sullivan SP, Compans RW, Prausnitz MR et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS ONE. 2009;4:e4773.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu QY, Zarnitsyn VG, Ye L, Wen ZY, Gao YL, Pan L et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci USA. 2009;106:7968–73.

    Article  CAS  PubMed  Google Scholar 

  23. Andrianov AK, DeCollibus DP, Gillis HA, Kha HH, Marin A, Prausnitz MR et al. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci USA. 2009;106:18936–41.

    Article  CAS  PubMed  Google Scholar 

  24. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24:585–94.

    Article  PubMed  Google Scholar 

  25. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010;142:187–95.

    Article  CAS  PubMed  Google Scholar 

  26. Hinrichs WLJ, Prinsen MG, Frijlink HW. Inulin glasses for the stabilization of therapeutic proteins. Int J Pharm. 2001;215:163–74.

    Article  CAS  PubMed  Google Scholar 

  27. Sun WQ, Leopold AC, Crowe LM, Crowe JH. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70:1769–76.

    Article  CAS  PubMed  Google Scholar 

  28. Bieganski RM, Fowler A, Morgan JR, Toner M. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol Prog. 1998;14:615–20.

    Article  CAS  PubMed  Google Scholar 

  29. Amorij JP, Meulenaar J, Hinrichs WLJ, Stegmann T, Huckriede A, Coenen F et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine. 2007;25:6447–57.

    Article  CAS  PubMed  Google Scholar 

  30. Molina MD, Armstrong TK, Zhang Y, Patel MM, Lentz YK, Anchordoquy TJ. The stability of lyophilized lipid/DNA complexes during prolonged storage. J Pharm Sci. 2004;93:2259–73.

    Article  CAS  PubMed  Google Scholar 

  31. Amorij JP, Huckriede A, Wischut J, Frifflink HW, Hinrichs WLJ. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25:1256–73.

    Article  CAS  PubMed  Google Scholar 

  32. Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Improved influenza vaccination in the skin using vaccine coated-microneedles. Vaccine. 2009;27:6932–8.

    Article  CAS  PubMed  Google Scholar 

  33. Quan FS, Kim YC, Yoo DG, Compans RW, Prausnitz MR, Kang SM. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS ONE. 2009;4:e7152.

    Article  PubMed  CAS  Google Scholar 

  34. Berhane Y, Demissie M. Cold chain status at immunisation centres in Ethiopia. East Afr Med J. 2000;77:476–9.

    CAS  PubMed  Google Scholar 

  35. Bloom BR. Vaccines for the third-world. Nature. 1989;342:115–20.

    Article  CAS  PubMed  Google Scholar 

  36. Ameri M, Daddona PE, Maa YF. Demonstrated solid-state stability of parathyroid hormone PTH(1-34) coated on a novel transdermal microprojection delivery system. Pharm Res. 2009;26:2454–63.

    Article  CAS  PubMed  Google Scholar 

  37. Quan FS, Compans RW, Nguyen HH, Kang SM. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J Virol. 2008;82:1350–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hierholz JC, Suggs MT. Standardized viral hemagglutination and hemagglutination-inhibition test. I. Standardization of erythrocyte suspensions. Appl Microbiol. 1969;18:816–23.

    Google Scholar 

  39. Skountzou I, Quan FS, Jacob J, Compans RW, Kang SM. Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine. 2006;24:6110–9.

    Article  CAS  PubMed  Google Scholar 

  40. Spellberg B, Edwards JE. Type 1 type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32:76–102.

    Article  CAS  PubMed  Google Scholar 

  41. Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258:1–20.

    Article  CAS  PubMed  Google Scholar 

  42. Coenen F, Tolboom JTBM, Frijlink HW. Stability of influenza sub-unit vaccine—does a couple of days outside the refrigerator matter? Vaccine. 2006;24:525–31.

    Article  CAS  PubMed  Google Scholar 

  43. Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine. 2008;26:3197–208.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out at the Emory University School of Medicine and the Georgia Tech Center for Drug Design, Development and Delivery and Institute for Bioengineering and Biosciences. It was supported in part by NIH grants R01-EB006369 (M.R.P.), U01-AI0680003 (R.W.C.), SERCEB (R.W.C) and the Georgia Research Alliance Program grant (S.M.K). We thank Dr. Vladimir Zarnitsyn for microneedle fabrication, Dr. Andrew Lyon for dynamic light scattering assay, and Dr. Mark Allen for laser microfabrication facilities. M.R.P. serves as a consultant and is an inventor on patents licensed to companies developing microneedle-based products. This possible conflict of interest has been disclosed and is being managed by Georgia Tech and Emory University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Moo Kang or Mark R. Prausnitz.

Additional information

Yeu-Chun Kim and Fu-Shi Quan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YC., Quan, FS., Compans, R.W. et al. Stability Kinetics of Influenza Vaccine Coated onto Microneedles During Drying and Storage. Pharm Res 28, 135–144 (2011). https://doi.org/10.1007/s11095-010-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0134-6

KEY WORDS

Navigation