Skip to main content
Log in

Dispersion of multi-walled carbon nanotubes in biocompatible dispersants

  • Special focus: Safety of Nanoparticles
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahr JL, Mickelson ET, Bronikowski MJ et al (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 193–194

  • Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6

    Article  PubMed  Google Scholar 

  • Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Davoren M, Herzog E, Casey A et al (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In vitro 21:438–448

    Article  CAS  PubMed  Google Scholar 

  • Fiorito S, Serafino A, Andreola F et al (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100–1105

    Article  CAS  Google Scholar 

  • Ge C, Lao F, Li W et al (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80:9426–9434

    Article  CAS  PubMed  Google Scholar 

  • Holman MW, Lackner DI (2006) The nanotech report, 4th edn. Lux Research, New York

    Google Scholar 

  • Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Lacerda L, Bianco A, Prato M et al (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  CAS  PubMed  Google Scholar 

  • Lam CW, James JT, McCluskey R et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  CAS  PubMed  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotubes interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmcol 207:221–231

    CAS  Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  PubMed  Google Scholar 

  • Rotoli BM, Bussolati O, Bianchi MG et al (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102

    Article  CAS  PubMed  Google Scholar 

  • Sayes CM, Liang F, Hudson JL et al (2005) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  PubMed  CAS  Google Scholar 

  • Schipper ML, Nakayama-Ratchford N, Davis CR et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotech 3:216–221

    Article  CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 66:1909–1926

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:698–708

    Article  CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  CAS  Google Scholar 

  • Stix G (2001) Little big science. Nanotechnology. Sci Am 285(3):32–37

    Article  CAS  PubMed  Google Scholar 

  • Thayer AM (2007) Carbon nanotubes by the metric ton: anticipating new commercial applications, producers increase capacity. Chem Eng News 85:29–38

    Google Scholar 

  • Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall nanotubes in mice. J Nanosci nanotechnol 4(8):1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Wang RK, Park HO, Chen WC et al (2008) Improving the effectiveness of interfacial trapping in removing single-walled carbon nanotube bundles. J Am Chem Soc 130(44):14721–14728

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xing G, Chai Z (2008) Are carbon nanotubes safe? Nat Nanotoxicol 3(4):191–192

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Direction Générale des Technologies de la Recherche et de l’Energie” (DGTRE) of the Walloon Region of Belgium (Nanotoxico Project, RW/FUNDP research convention No 516252). O. Toussaint is a Research Associate of the Belgian FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Toussaint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piret, JP., Detriche, S., Vigneron, R. et al. Dispersion of multi-walled carbon nanotubes in biocompatible dispersants. J Nanopart Res 12, 75–82 (2010). https://doi.org/10.1007/s11051-009-9697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9697-8

Keywords

Navigation