Skip to main content
Log in

Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Binary TiO2/SiO2 and SnO2/SiO2 nanoparticles have been synthesized by feeding evaporated precursor mixtures into an atmospheric pressure diffusion flame. Particles with controlled Si:Ti and Si:Sn ratios were produced at various flow rates of oxygen and the resulting powders were characterized by BET (Brunauer–Emmett–Teller) surface area analysis, XRD, TEM and Raman spectroscopy. In the Si–O–Ti system, mixed oxide composite particles exhibiting anatase segregation formed when the Si:Ti ratio exceeded 9.8:1, while at lower concentrations only mixed oxide single phase particles were found. Arrangement of the species and phases within the particles correspond to an intermediate equilibrium state at elevated temperature. This can be explained by rapid quenching of the particles in the flame and is in accordance with liquid phase solubility data of Ti in SiO2. In contrast, only composite particles formed in the Sn–O–Si system, with SnO2 nanoparticles predominantly found adhering to the surface of SiO2 substrate nanoparticles. Differences in the arrangement of phases and constituents within the particles were observed at constant precursor mixture concentration and the size of the resultant segregated phase was influenced by varying the flow rate of the oxidant. The above effect is due to the variation of the residence time and quenching rate experienced by the binary oxide nanoparticles when varying the oxygen flow rate and shows the flexibility of diffusion flame aerosol reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa M., Nosaka Y., Fujii N. (1991). FT-IR liquid attenuated total reflection study of TiO2-SiO2 sol-gel reaction. J. Non-Cryst. Solids 128: 77–85

    Article  CAS  Google Scholar 

  • Anderson C., Bard A.J. (1995). An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99: 9882–9885

    Article  CAS  Google Scholar 

  • Astier M., Vergnon P. (1976). Determination of the diffusion coefficients from sintering data of ultrafine oxide particles. J. Solid State Chem. 19: 67–73

    Article  CAS  Google Scholar 

  • Atik M., Zarzycki J. (1994). Protective TiO2-SiO2 coatings on stainless-steel sheets prepared by dip-coating. J. Mater. Sci. Lett. 13:1301–1304

    Article  CAS  Google Scholar 

  • Backer M.R., R. Cavender, M.L. Elder, P.C. Jones & J.A. Murphy, 1991. U.S. Patent number 5,067,975.

  • Bordiga S., Coluccia S., Lamberti C., Marchese L., Zecchina A., Boscherini F., Buffa F., Genoni F., Leofanti G., Petrini G., Vlaic G. (1994) XAFS study of Ti-silicalite: Structure of framework Ti(IV) in the presence and absence of reactive molecules (H2O, NH3) and comparison with ultraviolet-visible and IR results. J. Phys. Chem. 98: 4125–4132

    Article  CAS  Google Scholar 

  • Brambilla G., Pruneri V., Reekie L. (2000). Photorefractive index gratings in SnO2:SiO2 optical fibers. Appl. Phys. Lett. 76: 807–809

    Article  CAS  Google Scholar 

  • Brinker C.J., Kirkpatrick R.J., Tallant D.R., Bunker B.C., Montez B. (1988). NMR confirmation of strained “defects" in amorphous silica. J. Non-Cryst. Solids 99: 418–428

    Article  CAS  Google Scholar 

  • Canevali C., Chiodini N., Morazzoni F., Padovani J., Paleari A., Scotti R., Spinolo G. (2001). Substitutional tin-doped silica glasses: An infrared study of the sol–gel transition. J. Non-Cryst. solids 293-295: 32–38

    Article  Google Scholar 

  • Cardoso W.S., Francisco M.S.P., Lucho A.M.S., Gushilem Y. (2004) Synthesis and acidic properties of the SiO2/SnO2 mixed oxides obtained by the sol–gel process. Evaluation of immobilized copper hexacyanoferrate as an electrochemical probe. Solid State Ionics 167:165–173

    Article  CAS  Google Scholar 

  • Carturan G., Ceccato R., Principi G., Russo U. (1995) Structural-analysis of mixed tin oxides produced by the sol-gel method. J. Radioanal. Nucl. Chem. 190:419–423

    Article  CAS  Google Scholar 

  • Chiodini N., Paleari A., DiMartino D., Spinolo G. (2002). SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system. Appl. Phys. Lett. 81:1702–1704

    Article  CAS  Google Scholar 

  • Chiodini N., Paleari A., Spinolo G., Crespi P. (2001). Photorefractivity in SiO2:SnO2 glass-ceramics by visible light. J. Non-Cryst. Solids 322:266–271

    Article  CAS  Google Scholar 

  • Chiodini N., Morazzoni F., Paleari A., Scotti R., Spinolo G. (1999). Sol–gel synthesis of monolithic tin-doped silica glass. J. Mater. Chem. 9:2653–2658

    Article  CAS  Google Scholar 

  • Cox D.F., Fryberger T.B., Semancik S. (1998). Oxygen vacancies and defect electronic states on the SnO2(110)-1×1 surface. Phys. Rev. B 38:2072–2083

    Article  Google Scholar 

  • Dagan G., Sampath S., Lev O. (1995). Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments. Chem. Mater. 7:446–453

    Article  CAS  Google Scholar 

  • DeVries R.C., Roy R., Osborn E.F. (1954) The system TiO2-SiO2. Trans. Brit. Ceram. Soc. 53:525–540

    CAS  Google Scholar 

  • Ehrmann S.H., Friedlander S.K., Zachariah M.R. (1998) Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J. Aerosol Sci. 29:687–706

    Article  Google Scholar 

  • Ehrmann S.H., Friedlander S.K., Zachariah M.R. (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J. Mater. Res. 14:4551–4561

    Google Scholar 

  • Feng Y.S., Zhou S.M., Li Y., Zhang L.D. (2003). Preparation of the SnO2/SiO2 xerogel with a large specific surface area. Mater. Lett. 57:2409–2412

    Article  CAS  Google Scholar 

  • Gao X., Bare S.R., Fierro J.L.G., Banares M.A., Wachs I.E. (1998) Preparation and in-situ spectroscopic characterization of molecularly dispersed titanium oxide on silica. J. Phys. Chem. B. 102:5653–5666

    Article  CAS  Google Scholar 

  • Harrison P.G., Willett M.J. (1989). Tin oxide surfaces. J. Chem. Soc. Farady Trans. 85:1921–1932

    Article  CAS  Google Scholar 

  • Hung C.H., Katz J.L. (1992). Formation of mixed oxide powders in flames: Part I. TiO2–SiO2. J. Mater. Res. 7:1861–1869

    CAS  Google Scholar 

  • Ishida T., Kobayashi H., Nakato Y. (1993). Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 73: 4344–4350

    Article  CAS  Google Scholar 

  • Jang H.D., Kim S.K. (2001) Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor. Mater. Res. Bull. 36:627–637

    Article  CAS  Google Scholar 

  • Johannessen T., Pratsinis S.E., Livbjerg H. (2001) Computational analysis of coagulation and coalescence in the flame synthesis of titania particles. Powder Technol. 118:242–250

    Article  CAS  Google Scholar 

  • Kennedy M.K., Kruis F.E., Fissan H. (2000). Gas phase synthesis of size selected SnO2 nanoparticles for gas sensor applications. J. Metastable and Nanocryst. Mat. 8:949–954

    Google Scholar 

  • Kingery W.D., Bowen H.K., Uhlmann D.R. (1976) Introduction to Ceramics. Wiley-Interscience, New York 494

    Google Scholar 

  • Kodas T.T., Engler E.M., Lee V.Y. (1989). Generation of thick Ba2YCu3O7 films by aerosol deposition. Appl. Phys. Lett. 54:1923–1925

    Article  CAS  Google Scholar 

  • Lee S.K., Chung K.W., Kim S.G. (2002) Preparation of various composite TiO2/SiO2 ultrafine particles by vapor-phase hydrolysis. Aerosol. Sci. Tech. 36:763–770

    Article  CAS  Google Scholar 

  • Lindackers D., Janzen C., Rellinghaus B., Wassermann E.F., Roth P. (1998) Synthesis of Al2O3 and SnO2 particles by oxidation of metalorganic precursors in premixed H2/O2/Ar low pressure flames. Nanostruct. Mater. 10: 1247–1270

    Article  CAS  Google Scholar 

  • Miller J.B., Johnston S.T., Ko E.I. (1994) Effect of prehydrolysis on the textural and catalytic properties of titania-silica aerogels. J. Catal. 150:311–320

    Article  CAS  Google Scholar 

  • Miyamoto Y., Kirihara S., Kanehira S. (2004) Smart processing development of photonic crystals and fractals. Int. J. Appl. Ceram. Technol. 1:40–48

    Article  CAS  Google Scholar 

  • Morrow B.A., Mcfarlan A.J. (1990) Chemical reactions at silica surfaces. J. Non-Cryst. Solids. 120:61–71

    Article  CAS  Google Scholar 

  • Mueller R., Kammler H.K., Pratsinis S.E., Vital A., Beaucage G., Burtscher P. (2004). Non-agglomerated dry silica nanoparticles. Powder Technol. 140:40–48

    Article  CAS  Google Scholar 

  • Niles D.W., Rioux D., Hochst H. (1993) A photoemission investigation of the SnO2/CdS interface: A front contact interface study of CdS/CdTe solar cells. J. Appl. Phys. 73: 4586–4590

    Article  CAS  Google Scholar 

  • Popova L., Djulgerova R., Beshkov G., Mihailov V., Szytula A., Gondek L., Petrovic Z.j. (2004) SnO2 thin films for gas sensors modified by hexamethyldisilazane after rapid thermal annealing. Sensor. Actuat. B-Chem. 100:357–363

    Article  CAS  Google Scholar 

  • Powell Q.H., Fotou G.P., Kodas T.T., Anderson B.M., Guo Y.X. (1997). Gas-phase coating of TiO2 with SiO2 in a continuous flow hot-wall aerosol reactor. J. Mater. Res. 12: 552–559

    CAS  Google Scholar 

  • Pratsinis S.E., Vemury S. (1996) Particle formation in gases: A review. Powder Technol. 88:267–273

    Article  CAS  Google Scholar 

  • Sahm T., Maedler L., Gurlo A., Barsan N., Pratsinis S.E., Weimar U. (2004). Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensor. Actuat. B-Chem. 98:148–153

    Article  CAS  Google Scholar 

  • Salas P., Hernandez J.G., Montoya J.A., Navaretter J., Salmones J., Schifter I., Morales J. (1997) Effect of tin content on silica mixed oxides: Sulfated and unsulfated catalysts. J. Mol. Catal. A: Chem. 123:149–154

    Article  CAS  Google Scholar 

  • Song Y., Sakurai T., Kishimoto K., Maruta K., Matsumoto S., Kikuchi K. (1998) Synthesis and optical properties of low-temperature SiOx and TiOx thin films prepared by plasma enhanced CVD. Vacuum 51:525–530

    Article  CAS  Google Scholar 

  • Schultz P.C. (1976). Binary titania-silica glasses containing 10 to 20 Wt% TiO2. J. Amer. Ceram. Soc. 59:214–219

    Article  CAS  Google Scholar 

  • Slater B., Catlow C.R.A., Gay D.H., Williams D.E., Dusastre V. (1999). Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B 103:10644–10650

    Article  CAS  Google Scholar 

  • Srinivasan S., Datye A.K., Smith M.H., Peden C.H.F. (1994) Interaction of titanium isopropoxide with surface hydroxyls on Silica. J. Catal. 145:565–573

    Article  CAS  Google Scholar 

  • Stakheev A.Y., Shpiro E.S., Apijok J. (1993) XPS and XAES study of titania-silica mixed oxide system. J. Phys. Chem. 97: 5668–5672

    Article  CAS  Google Scholar 

  • Stark W.J., Pratsinis S.E., Baiker A. (2001) Flame made titania/silica epoxidation catalysts. J. Catal. 203:516–524

    Article  CAS  Google Scholar 

  • Vemury S., Pratsinis S.E., Kibbey L. (1997) Electrically controlled flame synthesis of nanophase TiO2, SiO2 and SnO2 powders. J. Mater. Res. 12:1031–1042

    CAS  Google Scholar 

  • Vemury S., Pratsinis S.E. (1995) Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78:2984–2992

    Article  CAS  Google Scholar 

  • Wegner K., Pratsinis S.E. (2003a) Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem. Eng. Sci. 58:4581–4589

    Article  CAS  Google Scholar 

  • Wegner K., Pratsinis S.E. (2003b) Nozzle-quenching process for controlled flame synthesis of titania nanoparticles. AIChE Journal. 49:1667–1675

    Article  CAS  Google Scholar 

  • Yu-Zhang K., Boisjolly G., Rivory J., Kilian L., Colliex C. (1994) Characterization of TiO2/SiO2 multilayers by high resolution transmission electron microscopy and electron energy loss spectroscopy. Thin Solid Films 253:299–302

    Article  CAS  Google Scholar 

  • Zhu D., Kosugi T. (1996) Thermal conductivity of GeO2-SiO2 and TiO2-SiO2 mixed glasses. J. Non-Cryst. Solids 202:88–92

    Article  CAS  Google Scholar 

  • Zhu W., Pratsinis S.E. (1997) Synthesis of SiO2 and SnO2 particles in diffusion flame reactors. AIChE Journal. 43:2657–2664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the EC and the Swiss BBW for their support of the FP5-Project Photocoat (EU contract No G5RD-CT-2002-00861; BBW project No 01.0571-1) and also Dr. Markus Wegmann and Dr. R.B. Diemer for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andri Vital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akurati, K.K., Dittmann, R., Vital, A. et al. Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis. J Nanopart Res 8, 379–393 (2006). https://doi.org/10.1007/s11051-005-9024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9024-y

Keywords

Navigation