Skip to main content
Log in

Types of self-motions of planar Stewart Gough platforms

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We show that the self-motions of general planar Stewart Gough platforms can be characterized in the complex extension of the Euclidean 3-space by the movement of three platform points in planes orthogonal to the planar base (3-point Darboux motion) and a simultaneous sliding of three planes orthogonal to the planar platform through points of the base (3-plane Mannheim motion). Based on this consideration, we prove that all one-parametric self-motions of a general planar Stewart Gough platform can be classified into two types (type I DM and type II DM, where DM abbreviates Darboux Mannheim). We also succeed in presenting a set of 24 equations yielding a type II DM self-motion that can be computed explicitly and that is of great simplicity seen in the context of self-motions. These 24 conditions are the key for the complete classification of general planar Stewart Gough platforms with type II DM self-motions, which is an important step in solving the famous Borel Bricard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Until now, a complete list of the special cases is missing. For known non-trivial special cases see [7].

  2. This example is initialized in [15] by the following coordinates of the first four pairs of anchor points: A 1=B 1=B 2=a 1=b 1=b 2=0, a 2=b 3=2, A 2=a 3=b 4=3, A 3=a 4=1, B 3=5, A 4=−21155/1872 and B 4=165/8.

  3. Note that the numbering of types is done with Roman numerals.

  4. Trivially, this sentence also holds for the excluded case, where all platform or base anchor points are collinear.

  5. Note that e 0=0 is preserved by translations of the reference frames.

  6. After plugging the solutions for the f i ’s of the linear system Ψ234 into Δ5 and Δ6, these two equations are fulfilled identically under consideration of e 0=0.

  7. The solution i=3 yields the same result, just for another indexing.

  8. A recent publication of Selig and Husty [29] can also be used for reasoning the correctness of Theorem 3.

  9. This is the reason why the congruent cubics C and c are even given by the same equation.

References

  1. Merlet J-P (1992) Singular configurations of parallel manipulators and Grassmann geometry. Int J Robot Res 8(5):45–56

    Article  Google Scholar 

  2. Borel E (1908) Mémoire sur les déplacements à trajectoires sphériques. Mémoire présenteés par divers savants à l’Académie des Sciences de l’Institut National de France 33(1):1–128

    Google Scholar 

  3. Bricard R (1906) Mémoire sur les déplacements à trajectoires sphériques. J École Polyt (2) 11:1–96

    Google Scholar 

  4. Husty M (2000) E. Borel’s and R. Bricard’s papers on displacements with spherical paths and their relevance to self-motions of parallel manipulators. In: Ceccarelli M (ed) International symposium on history of machines and mechanisms. Kluwer, Dordrecht, pp 163–172.

    Google Scholar 

  5. Vogler H (2008) Bemerkungen zu einem Satz von W. Blaschke und zur Methode von Borel-Bricard. Grazer Math Ber 352:1–16

    MathSciNet  MATH  Google Scholar 

  6. Karger A (2010) Parallel manipulators and Borel-Bricard’s problem. Comput Aided Geom Des 27(8):669–680

    Article  MathSciNet  MATH  Google Scholar 

  7. Nawratil G (2012) Review and recent results on Stewart Gough platforms with self-motions. Appl Mech Mater 162:151–160

    Article  Google Scholar 

  8. Ma O, Angeles J (1992) Architecture singularities of parallel manipulators. Int J Robot Autom 7(1):23–29

    Google Scholar 

  9. Karger A (2003) Architecture singular planar parallel manipulators. Mech Mach Theory 38(11):1149–1164

    Article  MATH  Google Scholar 

  10. Nawratil G (2008) On the degenerated cases of architecturally singular planar parallel manipulators. J Geom Graph 12(2):141–149

    MathSciNet  MATH  Google Scholar 

  11. Röschel O, Mick S (1998) Characterisation of architecturally shaky platforms. In: Lenarcic J, Husty ML (eds) Advances in robot kinematics: analysis and control. Kluwer, Dordrecht, pp 465–474

    Chapter  Google Scholar 

  12. Wohlhart K (2010) From higher degrees of shakiness to mobility. Mech Mach Theory 45(3):467–476

    Article  MATH  Google Scholar 

  13. Karger A (2008) Architecturally singular non-planar parallel manipulators. Mech Mach Theory 43(3):335–346

    Article  MathSciNet  MATH  Google Scholar 

  14. Nawratil G (2009) A new approach to the classification of architecturally singular parallel manipulators. In: Kecskemethy A, Müller A (eds) Computational kinematics. Springer, Berlin, pp 349–358

    Chapter  Google Scholar 

  15. Karger A (2008) New self-motions of parallel manipulators. In: Lenarcic J, Wenger P (eds) Advances in robot kinematics: analysis and design. Springer, Berlin, pp 275–282

    Chapter  Google Scholar 

  16. Karger A (2008) Self-motions of Stewart-Gough platforms. Comput Aided Geom Des 25(9):775–783

    Article  MathSciNet  MATH  Google Scholar 

  17. Karger A, Husty M (1998) Classification of all self-motions of the original Stewart-Gough platform. Comput Aided Des 30(3):205–215

    Article  MATH  Google Scholar 

  18. Kœnigs G (1897) Leçons de cinématique. Librairie Scientifique. Hermann, Paris

    MATH  Google Scholar 

  19. Bottema O, Roth B (1990) Theoretical kinematics. Dover, New York

    MATH  Google Scholar 

  20. Husty M, Mielczarek S, Hiller M (2002) A redundant spatial Stewart-Gough platform with a maximal forward kinematics solution set. In: Lenarcic J, Thomas F (eds) Advances in robot kinematics: theory and applications. Springer, Berlin, pp 147–154

    Google Scholar 

  21. Mielczarek S, Husty ML, Hiller M (2002) Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set. In: Proceedings of the international symposium of multibody simulation and mechatronics, Mexico City, Mexico

  22. Borras J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms. In: Proceedings of robotics science and systems, Zaragoza, Spain

  23. Karger A (1998) Architecture singular parallel manipulators. In: Lenarcic J, Husty ML (eds) Advances in robot kinematics: analysis and control. Kluwer, Dordrecht, pp 445–454

    Chapter  Google Scholar 

  24. Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31(4):365–380

    Article  Google Scholar 

  25. Nawratil G (2004) Zur Geometrie von Stewart Gough Plattformen. Master thesis, TU Vienna

  26. Nawratil G (2011) Basic result on type II DM self-motions of planar Stewart Gough platforms. In: Lovasz ECh, Corves B (eds) Mechanisms, transmissions and application. Springer, Berlin, pp 235–244

    Google Scholar 

  27. Nawratil G (2011) Necessary conditions for type II DM self-motions of planar Stewart Gough platforms, Technical report no 219. Geometry preprint series. TU Vienna

  28. Nawratil G (2011) Planar Stewart Gough platforms with a type II DM self-motion. J Geom 102(1):149–169

    Article  MathSciNet  MATH  Google Scholar 

  29. Selig JM, Husty M (2011) Half-turns and line symmetric motions. Mech Mach Theory 46(2):156–167

    Article  MATH  Google Scholar 

  30. Krames J (1937) Zur Bricardschen Bewegung, deren sämtliche Bahnkurven auf Kugeln liegen (Über symmetrische Schrotungen II). Mh Math Phys 45:407–417

    Article  MathSciNet  Google Scholar 

  31. Bricard R (1897) Mémoire sur la théorie de l’octaèdre articulé. J Math Pures Appl 3:113–148

    Google Scholar 

  32. Blaschke W (1920) Wackelige Achtflache. Math Z 6:85–93

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project “Flexible polyhedra and frameworks in different spaces”, an international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.

Moreover, the author would like to thank the reviewers for their useful comments and suggestions which have helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nawratil.

Appendix

Appendix

In the following, we list the items 3,4,5,6,7,8,10 of Theorem 3 given by Karger [13]:

  1. 3.

    m 1,…,m 5 and M 1,…,M 5 are collinear,

  2. 4.

    m 1=m 2=m 3, m 1,…,m 5 are collinear, M 4=M 5,

  3. 5.

    m 1=m 2=m 3=m 4,

  4. 6.

    m 1=m 2=m 3, M 1,M 2,M 3 are collinear,

  5. 7.

    M 1,M 2,M 3 and M 3,M 4,M 5 are collinear, m 1=m 2, m 4=m 5, m 1,…,m 5 are collinear,

  6. 8.

    m 1,…,m 4 and M 1,…,M 4 are collinear and

    (16)
  7. 10.

    Points m 1,…,m 5 are collinear and pairwise distinct, points M 1,…,M 5 are coplanar (no three of M 1,…,M 5 are collinear) and two equations remain,

    $$ \begin{array}{@{}lll} B_3B_4(a_4-a_3)(a_5A_2-A_5a_2) \cr\noalign{\vspace{3pt}} \quad {}+B_3B_5(a_3-a_5)(a_4A_2-A_4a_2) \cr\noalign{\vspace{3pt}} \quad {}+B_4B_5(a_5-a_4)(a_3A_2-A_3a_2)=0, \cr\noalign{\vspace{3pt}} B_3B_4A_5(a_4-a_3)(a_5-a_2) \cr\noalign{\vspace{3pt}} \quad {}+B_3B_5A_4(a_4-a_2)(a_3-a_5) \cr\noalign{\vspace{3pt}} \quad {}+B_4B_5A_3(a_3-a_2)(a_5-a_4)=0. \end{array} $$
    (17)

    If m 1=m 2, points M 3,M 4,M 5 must be collinear and (17) yield one equation, a degenerated case.

Note that the formulas (16) and (17) are given with respect to the coordinate systems with A 1=B 1=B 2=a 1=b 1=b 2=0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawratil, G. Types of self-motions of planar Stewart Gough platforms. Meccanica 48, 1177–1190 (2013). https://doi.org/10.1007/s11012-012-9659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9659-6

Keywords

Navigation