Skip to main content

On the Line-Symmetry of Self-motions of Linear Pentapods

  • Chapter
  • First Online:
Advances in Robot Kinematics 2016

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 4))

Abstract

We show that all self-motions of pentapods with linear platform of Type 1 and Type 2 can be generated by line-symmetric motions . Thus this paper closes a gap between the more than 100 year old works of Duporcq and Borel and the extensive study of line-symmetric motions done by Krames in the 1930s. As a consequence we also get a new solution set for the Borel Bricard problem. Moreover we discuss the reality of self-motions and give a sufficient condition for the design of linear pentapods of Type 1 and Type 2, which have a self-motion free workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These are the only non-trivial motions where every point of the moving space has a spherical trajectory (cf. [3, Chap. VI]).

  2. 2.

    The corresponding sphere centers of lines belonging to the other regulus are again located on lines (cf. [9, p. 24]), which imply linear pentapods with an architecturally singular design.

  3. 3.

    With respect to the notation introduced in Sect. 2 these five parameters are \(C,a_r,a_c,a_4\) and \(p_5\) or \(R_1\) (cf. Eq. (7)) by canceling the factor of similarity by setting \(A=1\).

  4. 4.

    These are the parameters acgk used in [9, Sect. 2.3].

  5. 5.

    This angle condition can be seen as the limit of the sphere condition (cf. [12, Sect. 4.1]).

  6. 6.

    A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.

  7. 7.

    Note that all basic surfaces and trajectories can be parametrized due to Remark 2.

References

  1. Nawratil, G., Schicho, J.: Self-motions of pentapods with linear platform. In: Robotica (in press). doi:10.1017/S0263574715000843. arXiv:1407.6126

  2. Borel, E.: Mémoire sur les déplacements à trajectoires sphériques. Mémoire présenteés par divers savants à l’Académie des Sciences de l’Institut National de France 33(1), 1–128 (1908)

    MATH  Google Scholar 

  3. Bricard, R.: Mémoire sur les déplacements à trajectoires sphériques. Journal de École Polytechnique(2) 11, 1–96 (1906)

    Google Scholar 

  4. Krames, J.: Zur Bricardschen Bewegung, deren sämtliche Bahnkurven auf Kugeln liegen. Monatsheft für Mathematik und Physik 45, 407–417 (1937)

    Article  MATH  Google Scholar 

  5. Koenigs, G.: Leçons de Cinématique (avec notes par G. Darboux). Paris (1897)

    Google Scholar 

  6. Mannheim, A.: Principes et Développements de Géométrie Cinématique. Paris (1894)

    Google Scholar 

  7. Duporcq, E.: Sur le déplacement le plus général d’une droite dont tous les points décrivent des trajectoires sphériques. Journal de mathématiques pures et appliquées 5(4), 121–136 (1898)

    MATH  Google Scholar 

  8. Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing Company, Amsterdam (1979)

    Google Scholar 

  9. Hartmann, D.: Singular stewart-gough platforms. Master Thesis, Department of Mechanical Engineering, McGill University, Montreal, Canada (1995)

    Google Scholar 

  10. Krames, J.: Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden. Monatsheft für Mathematik und Physik 46, 172–195 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallet, M., Nawratil, G., Schicho, J., Selig, J.M.: Mobile Icosapods. Advances in Applied Mathematics (in press). doi:10.1016/j.aam.2016.12.002. arXiv:1603.07304

  12. Nawratil, G.: Correcting Duporcq’s theorem. Mech. Mach. Theory 73, 282–295 (2014)

    Article  Google Scholar 

  13. Nawratil, G.: On the Line-symmetry of Self-motions of Linear Pentapods. [arXiv:1510.03567]

  14. Chernova, N., Wijewickrema, S.: Algorithms for projecting points onto conics. J. Comput. Appl. Math. 251, 8–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Grant No. P 24927-N25 of the Austrian Science Fund FWF within the project “Stewart Gough platforms with self-motions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nawratil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nawratil, G. (2018). On the Line-Symmetry of Self-motions of Linear Pentapods. In: Lenarčič, J., Merlet, JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56802-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56802-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56801-0

  • Online ISBN: 978-3-319-56802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics