Skip to main content
Log in

Polyvinylpyrrolidone/ZrO2-based sol–gel films applied in highly reflective mirrors for inertial confinement fusion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polyvinylpyrrolidone (PVP)/ZrO2-based hybrid thin films, with suitable properties for application in the high power lasers, have been prepared combining the advantages of both the sol–gel route and the organic-inorganic hybrid materials. By virtue of light scattering analysis, the chemical composition of the reaction system was fully optimized, endowing the films with good optical properties and high laser-induced damage threshold (LIDT). Light scattering studies also provided valuable structural information about the hybrid sols, which offered a better understanding of the structure and performance of the hybrid films. Our experiments showed that, in the hybrid sols, the incomplete substitution for the chelating ligands by the hydroxyls might considerably conceal and weaken the effect of PVP on the nucleation and growth of ZrO2 particles. Thus, the incorporation of PVP only resulted in slight decreases in the refractive index and LIDT of the films. By energy relaxation through their flexible polymer chains, however, the addition of PVP could easily enhance the stress compatibility between the high- and low-index layers and then facilitate the deposition of the multi-layer highly reflective mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thomas IM (1987) Appl Optics 26:4688

    CAS  Google Scholar 

  2. Floch HG, Priotton JJ, Thomas IM (1990) SPIE 1328:307

    Article  CAS  Google Scholar 

  3. Thomas IM (1994) SPIE 2288:50

    Article  CAS  Google Scholar 

  4. McInnes HA, Andrew JE, Bazin NJ, Morris AJ, Porter KJ (1997) SPIE 3244:500

    Article  Google Scholar 

  5. Belleville Ph, Bonnin C, Lavastre É, Pégon Ph, Rorato Y (2000) SPIE 4347:588

    Article  Google Scholar 

  6. McInnes HA, Andrew JE, Bazin NJ, Morris AJ (2000) SPIE 3902:215

    Article  CAS  Google Scholar 

  7. Zhang QY, Shen J, Wang J, Wu GM, Chen LY (2000) Int J Inorg Mater 2:319

    Article  CAS  Google Scholar 

  8. Grosso D, Seromon PA (2000) Thin Solid Films 368:116

    Article  CAS  Google Scholar 

  9. Pégon P, Germain C, Rorato Y, Belleville Ph, Lavastre E (2004) SPIE 5250:170

    Article  CAS  Google Scholar 

  10. Belleville Ph, Prené Ph, Bonnin C, Beaurain L, Montouillout Y, Lavastre É (2004) SPIE 5250:196

    Article  CAS  Google Scholar 

  11. Zhao Y, Tang ZS, Shao J, Fan Z (2004) SPIE 5273:23

    Article  CAS  Google Scholar 

  12. Higgins TV (1994) Laser Focus World 9:61

    Google Scholar 

  13. Reichling M, Bodemann A, Kaiser N (1998) Thin Solid Films 320:264

    Article  CAS  Google Scholar 

  14. Zhao YA, Gao WD, Shao JD, Fan ZX (2004) Appl Surf Sci 227:275

    Article  CAS  Google Scholar 

  15. Thomas IM (1986) Appl Optics 25:1481

    CAS  Google Scholar 

  16. Tian GL, Huang JB, Wang T, He HB, Shao JD (2005) Appl Surf Sci 239:201

    Article  CAS  Google Scholar 

  17. Zhang DW, Fan SH, Zhao YA, Gao WD, Shao JD, Fan RY, Wang YJ, Fan ZX (2005) Appl Surf Sci 243:232

    Article  CAS  Google Scholar 

  18. Zhao YA, Wang T, Zhang DP, Fan SH, Shao JD, Fan ZX (2005) Appl Surf Sci 239:171

    Article  CAS  Google Scholar 

  19. Zhu XL, Shi L, Chan J, Wang J, Ye C, Lo D (2005) Opt Commun 251:322

    Article  CAS  Google Scholar 

  20. Egger P, Sorarù GD, Diré S (2004) J Eur Ceram Soc 24:1371

    Article  CAS  Google Scholar 

  21. Lenormand P, Caravaca D, Laberty-Robert C, Ansart F (2005) J Eur Ceram Soc 25:2643

    Article  CAS  Google Scholar 

  22. Egger P, Sorarù GD, Ceccato R, Diré S (2005) J Eur Ceram Soc 25:2647

    Article  CAS  Google Scholar 

  23. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62

    Article  Google Scholar 

  24. Xu Y, Liu RL, Wu D, Sun YH, Gao HC, Deng F (2005) J Non-Cryst Solids 351:2403

    Article  CAS  Google Scholar 

  25. Kathryn GS, Jeffrey SL (1994) Chem Mater 6:890

    Article  Google Scholar 

  26. Ehrhart G, Capoen B, Robbe O, Boy Ph, Turrell S, Bouazaoui M (2006) Thin Solid Films 496:227

    Article  CAS  Google Scholar 

  27. Ohya T, Kabata M, Ban T, Ohya Y, Takahashi Y (2002) J Sol–Gel Sci Technol 25:43

    Article  CAS  Google Scholar 

  28. Méndez-Vivar J, Mendoze-Serna R, Valdez-Castro L (2001) J Non-Cryst Solids 288:200

    Article  Google Scholar 

  29. Pan M, Liu JR, Lu MK, Xu D, Yuan DR, Chen DR, Yang P, Yang ZH (2001) Thermochim Acta 376:77

    Article  CAS  Google Scholar 

  30. Zhao JP, Fan WH, Wu D, Sun YH (2000) J Non-Cryst Solids 261:15

    Article  CAS  Google Scholar 

  31. Guinebretière R, Soulestin B, Dauger A (1998) Thin Solid Films 319:197

    Article  Google Scholar 

  32. Guinebretière R, Dauger A, Masson O, Soulestin B (1999) Phil Mag A 79:1517

    Article  Google Scholar 

  33. Xu Y, Wu D, Sun YH, Li ZH, Dong BZ, Wu ZH (2005) Acta Phys Sin 54:2814

    CAS  Google Scholar 

  34. Keefer KD, Schaefer DW (1986) Phys Rev Lett 56:2376

    Article  CAS  Google Scholar 

  35. McMahon PJ, Moss SD (2002) J Appl Cryst 32:956

    Article  Google Scholar 

  36. Xu Y, Zhang L, Wu D, Sun YH, Huang ZX, Jiang XD, Wei XF, Li ZH, Dong BZ, Wu ZH (2005) J Opt Soc Am B 22:905

    Article  CAS  Google Scholar 

  37. Brian LC, Vladimir LK, Charles JÓ (2004) Chem Rev 104:3893

    Article  CAS  Google Scholar 

  38. Xu Y, Zhang B, Fan WH, Wu D, Sun YH (2003) Thin Solid Films 440:180

    Article  CAS  Google Scholar 

  39. Kozuka H, Takenaka S, Tokita H, Okubayashi M (2004) J Eur Ceram Soc 24:1585

    Article  CAS  Google Scholar 

  40. Linardos S, Zhang Q, Alcock JR (2006) J Eur Ceram Soc 26:117

    Article  CAS  Google Scholar 

  41. Sorek Y, Zevin M, Reisfeld R, Hurvits T, Ruschin S (1997) Chem Mater 9:670

    Article  CAS  Google Scholar 

  42. Cueto LF, Sánchez E, Torres-Martínez LM, Hirata GA (2005) Mater Charact 55:263

    Article  CAS  Google Scholar 

  43. Díaz-Parralejo A, Caruso R, Ortiz AL, Guiberteau F (2004) Thin Solid Films 458:92

    Article  CAS  Google Scholar 

  44. Ferrara MC, Perrone MR, Protopapa ML, Sancho-Parramon J, Bosch S, Mazzarelli S (2004) SPIE 5250:537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Zhihong Li and Zhonghua Wu (National Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences) for their help in SAXS experiments, to the Scientific Computing International Company for performing some of the film characterization. The financial support from the National Key Native Science Foundation, China (Grant Number 20133040) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, L., Xu, Y., Zhang, L. et al. Polyvinylpyrrolidone/ZrO2-based sol–gel films applied in highly reflective mirrors for inertial confinement fusion. J Sol-Gel Sci Technol 47, 173–181 (2008). https://doi.org/10.1007/s10971-008-1784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1784-2

Keywords

Navigation