Skip to main content
Log in

Study the microstructure, optical, mechanical, and dielectric characteristics of Cu2+/Zn2+-codoped PVA for CUT-OFF laser filters

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recent research aims to study the structural, optical, mechanical, and dielectric characteristics of polyvinyl alcohol (PVA) filled with Cu2+/Zn2+ doped-PVA polymeric composite films. Cu2+/ Zn2+/PVA films were prepared by the solution casting method and examined by different techniques such as XRD, UV–Vis, tensile testing, and dielectric measurements. PVA’s crystallinity is affected by the interaction of the PVA’s main chain and metal ions doping. The Cu2+-ions codoped Zn/PVA composite films reveal the absorbance spectrums in the visible region due to the surface plasmonic resonance (SPR) phenomenon for Cu-particles. It is found that the mechanical characteristics were improved, where the strength, Young’s modulus, and ductility were increased through the increase of Cu2+-ions content in Zn/PVA composite films. The dielectric measurement of the as-prepared polymeric composite films has investigated and demonstrated a highly attractive dielectric constant for the polymeric dielectric media. The obtained dielectric behaviors, alternating-current conductivity, and dielectric modulus depended on the Cu2+-ions content. The power output is reduced by increasing Cu2+-ions content, and therefore, the optical limiting of polymeric films becomes better. Finally, Cu2+-ions doped Zn/PVA composite films showed unique properties to be used as flexible electronic and optoelectronic devices, especially in dielectric media, CUT-OFF laser filters for biomedical laser applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Muhammad A, Mazhar AK, Zulfiqar AR (2019) Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polym Bull 76:73–86. https://doi.org/10.1007/s00289-018-2367-1

    Article  CAS  Google Scholar 

  2. Muhammad A, Mazhar AK, Zulfiqar AR (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci. https://doi.org/10.1002/pen.24855

    Article  Google Scholar 

  3. Ali ZI, Ghazy OA, Meligi G, Saleh HH, Bekhit M (2018) Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv Polym Technol 37:2. https://doi.org/10.1002/adv.21675

    Article  CAS  Google Scholar 

  4. Abomostafa H, Gad SA, Khalaf AI (2018) Improving the optical, mechanical and dielectric properties of PMMA:Mg1−xCuxO based polymer nanocomposites. Inorganic Organometall Polym Mater 28(6):2759–2769. https://doi.org/10.1007/s10904-018-0916-6

    Article  CAS  Google Scholar 

  5. Tamgadge YS, Sunatkari AL, Talwatkar SS, Pahurkar VG, Muley GG (2016) Passive optical limiting studies of nanostructured Cu doped ZnO–PVAcomposite thin films. Opt Mater 51:75–184. https://doi.org/10.1016/j.optmat.2015.11.037

    Article  CAS  Google Scholar 

  6. Kumar D, Karan Jat S, Khanna PK, Vijayan N, Banerjee S (2012) Synthesis, characterization, and studies of PVA/Co-Doped ZnO Nanocompositefilms. Int J Green Nanotechnol 4:408–416. https://doi.org/10.1080/19430892.2012.738509

    Article  CAS  Google Scholar 

  7. Chandrakala HN, Ramaraj B, Siddaramaiah S (2014) Optical properties and structural characteristics of zinc oxide- cerium oxide doped polyvinyl alcohol films. Alloys Compounds 586:333–342. https://doi.org/10.1016/j.jallcom.2013.09.194

    Article  CAS  Google Scholar 

  8. Guan H, Shao C, Wen S, Chen B, Gong J, Yang X (2003) A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Mater Chem Phys 82:1002–1006. https://doi.org/10.1016/j.matchemphys.2003.09.003

    Article  CAS  Google Scholar 

  9. Elhosiny Ali H, Abdel-Aziz MM, Algarni H, Yahia IS (2019) The structure analysis and optical performance of PVA films doped with Fe3+-metal for UV- limiter, and optoelectronics. Mater Res Expr 6:85334. https://doi.org/10.1088/2053-1591/ab2668

    Article  CAS  Google Scholar 

  10. Kaur D, Bharti A, Sharma T, Madhu C (2021) Dielectric properties of ZnO-based nanocomposites and their potential application. Int J Opt. https://doi.org/10.1155/2021/9950202

    Article  Google Scholar 

  11. Aparicio-Collado JL, Novoa JJ, Molina-Mateo J, Torregrosa-Cabanilles C, Serrano-Aroca Á, Sabater Serra R (2021) Novel semi-interpenetrated polymer networks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles. Polym 13:57. https://doi.org/10.3390/polym13010057

    Article  CAS  Google Scholar 

  12. Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5:83436–83447

    Article  CAS  Google Scholar 

  13. Diani J, Gall K (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 51:108–116

    Google Scholar 

  14. Da Silva AB, Marini J, Gelves G, Sundararaj U, Gregório R, Bretas RES (2013) Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur Polym J 49:3318–3327

    Article  Google Scholar 

  15. Alatawi NS, Abdelghany AM, Elsayed NH (2017) Res J Pharmaceut Biol Chem Sci 8(3): 263-272

  16. Ali FM (2019) Structural and optical characterization of [(PVAPVP)-Cu+2] composite films for promising semiconducting polymer devices. J Mol Struct 1189:352–359. https://doi.org/10.1016/j.molstruc.2019.04.014

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhu F, Zhang J, Xia L (2008) Converting layered zinc acetate nanobelts to one-dimensional structured zno nanoparticle aggregates and their photocatalytic activity. Nanoscale Res Lett 3:201–204. https://doi.org/10.1007/s11671-008-9136-2

    Article  CAS  PubMed Central  Google Scholar 

  18. Lukovic Goli D, Brankovic G, Pocuca Nesic M, Vojisavljevic K, Recnik A, Daneu N, Bernik S, Cepanovic MS, Poleti D (2011) Brankovic Structural characterization of self-assembled ZnO nanoparticles obtained by the sol–gel method from Zn(CH3COO)2·2H2O. Nanotechnology. https://doi.org/10.1088/0957-4484/22/39/395603

    Article  Google Scholar 

  19. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Vishnu Kirthi A, Jayaseelan C, SMarimuthu (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109:1403–1415. https://doi.org/10.1007/s00436-011-2387-3

    Article  PubMed  Google Scholar 

  20. Hu C, Li P, Zhang W, Che Y, Sun Y, Chi F, Ran S, Liu X, Lv Y (2016) Effect of cupric salts (Cu (NO3)2, CuSO4, Cu(CH3 COO)2) on Cu2 (OH)PO4 morphology for photocatalytic degradation of 2,4-dichlorophenol under near-infrared light irradiation. Mater Res 25:8. https://doi.org/10.1590/1980-5373-MR-2016-0561

    Article  Google Scholar 

  21. Chen Y-N, Jiao C, Zhao Y, Zhang J, Wang H (2018) Self-assembled polyvinyl alcohol−tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3:11788–11795. https://doi.org/10.1021/acsomega.8b02041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285(8):855–863. https://doi.org/10.1007/s00396-006-1630-4

    Article  CAS  Google Scholar 

  23. Yahia IS, Mohammed MI, Nawar AM (2019) Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys B: Phys Condensed Matter 556:48–60. https://doi.org/10.1016/j.physb.2018.12.031

    Article  CAS  Google Scholar 

  24. Ramesh S, Arof AK (2001) Structural, thermal and electrochemical cell characteristics of poly vinyl chloride)- based polymer electrolytes. Power Sour 99:41–47. https://doi.org/10.1016/S0378-7753(00)00690-X

    Article  CAS  Google Scholar 

  25. Alhazime AA, Mohamed MB, Abdel-Kader MH (2019) Effect of Zn1−xMgxS Doping on Structural, Thermal and Optical Properties of PVA. Inorganic Organometall Polym Mater 29:436–443. https://doi.org/10.1007/s10904-018-1014-5

    Article  CAS  Google Scholar 

  26. Al-Gunaid MQA, Saeed AMN, Siddaramaiah S (2018) Effects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly(vinyl alcohol) - cesium copper oxide–lithium perchlorate nanocomposite solid- polymer electrolytes. Appl Polym Sci 25:871. https://doi.org/10.1002/app.45852

    Article  CAS  Google Scholar 

  27. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing CompanyInc

    Google Scholar 

  28. Yahia IS, Bouzidi A, Zahran HY, Jilani W, AlFaify S, Algarni H, Guermazi H (2018) Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: laser filters and optical limiting effect. Mol Struct 1156:492–500. https://doi.org/10.1016/j.molstruc.2017.12.008

    Article  CAS  Google Scholar 

  29. Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil H (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37(2016):987–997. https://doi.org/10.1002/pc.23258

    Article  CAS  Google Scholar 

  30. Abdelghany AM, Meikhailc MS, Askerd N (2019) Synthesis and structural-biological correlation of PVC\PVAc polymer blends. J Mater Res Technol 8(5):3908–3916. https://doi.org/10.1016/j.jmrt.2019.06.053

    Article  CAS  Google Scholar 

  31. Abdullahi OG, Saleem SA (2016) Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. Electron Mater 45:11. https://doi.org/10.1007/s11664-016-4797-6

    Article  CAS  Google Scholar 

  32. Aziz SB (2017) ’Morphological and optical characteristics of chitosan based polymer nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7:444. https://doi.org/10.3390/nano7120444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. Mater Sci: Mater Electron 26:5303–5309. https://doi.org/10.1007/s10854-015-3067-3

    Article  CAS  Google Scholar 

  34. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  35. AN Mohamed, AS Tuhaiwer, ZS Alhmod,'' Determination the energy gap for polyvinyl alcohol films using copper acetate as additive'' College of Education for Pure Sciences, 8(2)( 2018), https://search.emarefa.net/detail/BIM-891804.

  36. Shilpa KN, Nithin KS, Siddaramaiah SS (2017) Visibly transparent PVA/sodium doped dysprosia (Na2Dy2O4) nano composite films with high refractive index: an optical study. Alloys Compounds 694:884–891. https://doi.org/10.1016/j.jallcom.2016.10.004

    Article  CAS  Google Scholar 

  37. Abdulwahid RT, Abdullah OG, Aziz SB, Hussein SA, Muhammad FF, Yahya MY (2016) The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. Mater Sci: Mater Electron 27:12112–12118. https://doi.org/10.1007/s10854-016-5363-y

    Article  CAS  Google Scholar 

  38. Kan C, Ch Wang J, Zhu HL (2010) Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel. Solid State Chem 183:858–865. https://doi.org/10.1016/j.jssc.2010.01.021

    Article  CAS  Google Scholar 

  39. J.Tauc, in Optical Properties of Solid, F. Abeles, Eds: Amsterdam: North-Holland, (1972) 277–313.

  40. Chopra N, Mansingh A, Chadha GK (1990) Electrical, optical and structural properties of amorphous V2O5 -TeO2 blown films. Non- Crystal Solids 194:126

    Google Scholar 

  41. Murad A-G, Adel MNS, Nithin KS, Madhukar BS, Siddaramaiah S (2017) ’ ’Optical parameters, electrical permittivity and I-V characteristics of PVA/Cs2CuO2 nanocomposite films for opto-electronic applications. Mater Sci: Mater Electron 28:8074–8086. https://doi.org/10.1007/s10854-017-6513-6

    Article  CAS  Google Scholar 

  42. Bouzidi A, Jilani W, Guermazi H, Yahia IS, Zahran HY, Sakr GB (2019) The effect of zinc iodide on the physicochemical properties of highly fexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance. Mater Sci: Mater Electron 30:11799–11806. https://doi.org/10.1007/s10854-019-01552-1

    Article  CAS  Google Scholar 

  43. Alabur M, Mohammed I, Kabbinadavamsha PA, Kuruba MV, Narasimhappa Y (2016) Synthesis and characterization of CuO nanoparticles and CuO doped PVA nanocomposites. Adv Mater Phys Chem 6:263–273. https://doi.org/10.4236/ampc.2016.610026

    Article  CAS  Google Scholar 

  44. Muhammad A, Mazhar AK, Zulfqar AR (2021) Fabrication of nano-CuO-loaded PVA composite flms with enhanced optomechanical properties. Polym Bull 78:1551–1571. https://doi.org/10.1007/s00289-020-03173-9

    Article  CAS  Google Scholar 

  45. El-sayd EA, Ibrahiem AA, Ahmed RM (2019) Effect of cobalt chloride on the optical properties of PVA/PEG blend. Arab J Nucl Sci Appl 52(1):22–32. https://doi.org/10.21608/ajnsa.2018.2768.1049

    Article  Google Scholar 

  46. Bi L, Taussig AR, Kim H-S (2008) Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys Rev B 10:104106. https://doi.org/10.1103/PhysRevB.78.104106

    Article  CAS  Google Scholar 

  47. French RH, Rodr´ıguez- Parada JM, Yang MK, Derryberry RA, Pfeiffenberger NT (2011) Optical properties of polymeric materials for concentrator photovoltaic systems. Solar Energy Mater Solar Cells 8:2077–2086. https://doi.org/10.1016/j.solmat.2011.02.025

    Article  CAS  Google Scholar 

  48. Jammula KR, Abhishek R, Debargha G, Madri Manish M, Satyanarayana SV, Madhu GM (2015) Enhanced mechanical properties of polyvinyl alcohol composite films containing copper oxide nanoparticles as filler. Polym Bull. 72:2033–2047. https://doi.org/10.1007/s00289-015-1386-4

    Article  CAS  Google Scholar 

  49. Zhao Y, Chen ZK, Liu Y, Xiao HM, Feng QP, Fu SY (2013) Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Compos A Appl Sci Manuf 55:178–187. https://doi.org/10.1016/j.compositesa.2013.09.005

    Article  CAS  Google Scholar 

  50. Kalyani P, Muthupandeeswari T (2022) Investigation on the altered properties of PVA flled magnesium oxide composite (PVA@xMgO) thin flms. Polym Bull. https://doi.org/10.1007/s00289-021-04004-1

    Article  Google Scholar 

  51. Rithin Kumar NB, Vincent C, Praveen BM (2014) Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys Res Int. https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  52. Rithin Kumar NB, Vincent C, Rajashekar FB, Praveen BM (2014) Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. Polymers. https://doi.org/10.1155/2014/846140

    Article  Google Scholar 

  53. Jammula K, Suggala Venkata S, Gattumane Motappa M, Vuppala V (2019) Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films. Heliyon 5:01851. https://doi.org/10.1016/j.heliyon.2019.e01851

    Article  Google Scholar 

  54. Azizian Y (2010) Dielectric properties of CdS-PVA nanocomposites prepared by ultrasound-assisted method. Optoelectron Adv Mater-Rapid Commun 4:1655–1658

    Google Scholar 

  55. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2012) Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. Phys Chem A 116:1051–1058. https://doi.org/10.1021/jp207114u

    Article  CAS  Google Scholar 

  56. Al Jaafari AA, Ayesh AS (2011) Effect of ZnO nano-particles on the dielectric relaxation behavior and thermal stability of polycarbonate host. Thermoplastic Compos Mater 24(6):837–852. https://doi.org/10.1177/0892705711403526

    Article  CAS  Google Scholar 

  57. Mathen JJ, Madhavan J, Thomas A, Edakkara AJ, Sebastian J, Ginson P Transparent ZnO–PVA binary composite for UV-A photo detector: optical, electrical and thermal properties followed by laser induced fluorescence. J Mater Sci: Mater Electron 28:7190–7203. https://doi.org/10.1007/s10854-017-6400-1

  58. Wenying Z, Ting L, Mengxue Y, Bo L, Shaolong Z, Zhen L, Xiangrong L, Juanjuan Z, Yun W, Huiwu C, Zhi-Min D (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater 42:1–11. https://doi.org/10.1016/j.ensm.2021.07.014

    Article  Google Scholar 

  59. Mathen JJ, Madhavan J, Thomas A, Edakkara AJ, Sebastian J, Joseph GP (2017) Transparent ZnO–PVA binary composite for UV-A photo detector: optical, electrical and thermal properties followed by laser induced fluorescence. Mater Sci: Mater Electron 28:7190–7203. https://doi.org/10.1007/s10854-017-6400-1

    Article  CAS  Google Scholar 

  60. Roberto A, Amanda C, Maria LM, de Karla T, Richard T, Mario M, Hector V, Javier F, Israel V (2018) Nanocomposites membranes with high permittivity based on PVA-ZnO nanoparticles for potential applications in flexible electronics. Polymers 10:1370. https://doi.org/10.3390/polym10121370

    Article  CAS  Google Scholar 

  61. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B 47:314–319. https://doi.org/10.1016/j.compositesb.2012.10.029

    Article  CAS  Google Scholar 

  62. Makled MH, Sheha E, Shanap TS, El-Mansy MK (2013) Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite. J Adv Res 4:531–538. https://doi.org/10.1016/j.jare.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  63. Saira I, Farah K, Shahid A, Mahmoud M, Umar A, Iffrah G, Dusan L (2018) Dielectric and impedance spectroscopic studies of three phase graphene/ titania/poly(vinyl alcohol) nanocomposite films. Results Phys 11:540–548. https://doi.org/10.1016/j.rinp.2018.09.049

    Article  Google Scholar 

  64. Ann Mary KA, Sajna MS, Prakashan V, Siby M, Unnikrishnan NV (2016) Freestanding Ag2S/CuS PVA films with improved dielectricproperties for organic electronics. J Appl Polym Sci. https://doi.org/10.1002/APP.43568

    Article  Google Scholar 

  65. Nasrallah DA, Morsi MA, El-Sayed F, Metwally RA (2020) Structural, optical and electrical properties of copper chloride filled polyvinyl chloride/polystyrene blend and its antifungal properties against Aspergillus avenaceus and Aspergillus terreus. Composites Communications 22:100451. https://doi.org/10.1016/j.coco.2020.100451

    Article  Google Scholar 

  66. Mervat Ismail M, Suzan Salah F, Neeraj M (2018) Dielectric relaxation and thermally activated ac conduction in (PVDF)/(rGO) nano-composites role of rGO over different fillers. Mater Sci: Mater Electron 25:5. https://doi.org/10.1007/s10854-018-9941-z

    Article  CAS  Google Scholar 

  67. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652

    Article  CAS  Google Scholar 

  68. Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR (2009) Appl Phys A 94:843

    Article  CAS  Google Scholar 

  69. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-019-00078-8

    Article  Google Scholar 

  70. Yasmin K, Elsaeedy HI, Mohammed MI, Zahran HY, Yahia IS (2020) Anomalous behaviour of the electrical properties for PVA/ TiO2 nanocomposite polymeric films. Polym Bull 25:61. https://doi.org/10.1007/s00289-019-03028-y

    Article  CAS  Google Scholar 

  71. Duhan S, Sanghi S, Agarwal A, Sheoran A, Rani S (2009) Dielectric properties and conductivity enhancement on heat treatment of bismuth silicate glasses containing TiO2. Physica B 404:1648–1654. https://doi.org/10.1016/j.physb.2009.01.041

    Article  CAS  Google Scholar 

  72. Latif I, Entisar E, Dhefaf HB, Jawad AK (2012) ’ ’Preparation, characterization and electrical study of (carboxymethylated polyvinyl alcohol/ZnO) nanocomposites. Am J Polym Sci 2(6):135–140. https://doi.org/10.5923/j.ajps.20120206.01

    Article  Google Scholar 

  73. Murowski L, Barczynski RJ (1995) Dielectric properties of transition metal oxide glasses. Non-Cryst Solids 185:84–93. https://doi.org/10.1016/0022-3093(95)00677-X

    Article  Google Scholar 

  74. Bhattacharyya S, Saha SK, Chakravorty M, Mandal BM, Chakravorty D, Goswami K (2001) Frequency-dependent conductivity of interpenetrating polymer network composites of polypyrrole-poly(vinyl acetate). Polym Sci Part B: Polym Phys 39:1935–1941. https://doi.org/10.1002/polb.1168

    Article  CAS  Google Scholar 

  75. Bobnar V, Levstik A, Huang C, Zhang QM (2004) Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite. Phys Rev Lett 92(4):8. https://doi.org/10.1103/PhysRevLett.92.047604

    Article  CAS  Google Scholar 

  76. Elhosiny Alia H, Khairy Y (2019) Optical and electrical performance of copper chloride doped polyvinyl alcohol for optical limiter and polymeric varistor devices. Phys B: Condensed Matter 572:256–265. https://doi.org/10.1016/j.physb.2019.08.014

    Article  CAS  Google Scholar 

  77. Khairy Y, Yahia IS, Elhosiny Ali H (2020) Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-of laser devices. J Mater Sci: Mater Electron 31:8072–8085. https://doi.org/10.1007/s10854-020-03348-0

    Article  CAS  Google Scholar 

  78. Elhosiny Ali H, Algarni H, Khairy Y (2020) Influence of cobalt-metal concentration on the microstructure and optical limiting properties of PVA. Opt Mater 108:110212. https://doi.org/10.1016/j.optmat.2020.110212

    Article  CAS  Google Scholar 

Download references

Funding

The authors express their appreciation to Ain Shams University in Egypt, for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I., Yahia, I.S. & El-Sayed, F. Study the microstructure, optical, mechanical, and dielectric characteristics of Cu2+/Zn2+-codoped PVA for CUT-OFF laser filters. Polym. Bull. 80, 8377–8405 (2023). https://doi.org/10.1007/s00289-022-04450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04450-5

Keywords

Navigation