Skip to main content
Log in

High-throughput crystallization-to-structure pipeline at RIKEN SPring-8 Center

  • Published:
Journal of Structural and Functional Genomics

Abstract

A high-throughput crystallization-to-structure pipeline for structural genomics was recently developed at the Advanced Protein Crystallography Research Group of the RIKEN SPring-8 Center in Japan. The structure determination pipeline includes three newly developed technologies for automating X-ray protein crystallography: the automated crystallization and observation robot system “TERA”, the SPring-8 Precise Automatic Cryosample Exchanger “SPACE” for automated data collection, and the Package of Expert Researcher’s Operation Network “PERON” for automated crystallographic computation from phasing to model checking. During the 5 years following April, 2002, this pipeline was used by seven researchers to determine 138 independent crystal structures (resulting from 437 purified proteins, 234 cryoloop-mountable crystals, and 175 diffraction data sets). The protocols used in the high-throughput pipeline are described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

3-D:

Three-dimensional

APCR-group:

Advanced Protein Crystallography Research Group

MR:

Molecular replacement

PDB:

Protein Data Bank

References

  1. Terwilliger TC (2000) Nat Struct Biol 7:935–939. doi:10.1038/80700

    Article  PubMed  CAS  Google Scholar 

  2. Service RF (2002) Science 298:948–950. doi:10.1126/science.298.5595.948

    Article  PubMed  CAS  Google Scholar 

  3. Pédelacq JD, Piltch E, Liong EC, Berendzen J, Kim CY, Rho BS et al (2002) Nat Biotechnol 20:927–932. doi:10.1038/nbt732

    Article  PubMed  CAS  Google Scholar 

  4. Chance MR, Bresnick AR, Burley SK, Jiang JS, Lima CD, Sali A et al (2002) Protein Sci 11:723–738. doi:10.1110/ps.4570102

    Article  PubMed  CAS  Google Scholar 

  5. Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A et al (2002) Proc Natl Acad Sci USA 99:11664–11669. doi:10.1073/pnas.142413399

    Article  PubMed  CAS  Google Scholar 

  6. O’Toole N, Grabowski M, Otwinowski Z, Minor W, Cygler M (2004) Proteins 56:201–210. doi:10.1002/prot.20060

    Article  PubMed  CAS  Google Scholar 

  7. Goh CS, Lan N, Douglas SM, Wu B, Echols N, Smith A et al (2004) J Mol Biol 336:115–130. doi:10.1016/j.jmb.2003.11.053

    Article  PubMed  CAS  Google Scholar 

  8. Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T et al (2000) Nat Struct Biol 7:943–945. doi:10.1038/80712

    Article  PubMed  CAS  Google Scholar 

  9. Sugahara Mitsuaki, Miyano M (2002) Tanpakushitsu Kakusan Koso 47:1026–1032

    PubMed  CAS  Google Scholar 

  10. Ueno G, Hirose R, Ida K, Kumasaka T, Yamamoto M (2004) J Appl Cryst 37:867–873. doi:10.1107/S0021889804019296

    Article  CAS  Google Scholar 

  11. Ueno G, Kanda H, Hirose R, Ida K, Kumasaka T, Yamamoto M (2006) J Struct Funct Genomics 7:15–22. doi:10.1007/s10969-005-9005-5

    Article  PubMed  CAS  Google Scholar 

  12. Sugahara M, Asada Y, Ayama H, Ukawa M, Taka H, Kunishima N (2005) Acta Crystallogr D61:1302–1305

    CAS  Google Scholar 

  13. Sugahara M, Kunishima N (2006) Acta Crystallogr D62:520–526

    CAS  Google Scholar 

  14. Sugahara M, Asada Y, Morikawa Y, Kageyama Y, Kunishima N (2008) Acta Crystallogr D64:686–695

    CAS  Google Scholar 

  15. Lokanath NK, Shiromizu I, Ohshima N, Nodake Y, Sugahara Mitsuaki, Yokoyama S, Kuramitsu S, Miyano M, Kunishima N (2004) Acta Crystallogr D60:1816–1823

    CAS  Google Scholar 

  16. Asada Y, Sawano M, Ogasahara K, Nakamura J, Ota M, Kuroishi C, Sugahara Mitsuaki, Yutani K, Kunishima N (2005) J Biochem (Tokyo) 138:343–353

    CAS  Google Scholar 

  17. Sugahara M, Ohshima N, Ukita Y, Sugahara Mitsuaki, Kunishima N (2005) Acta Crystallogr D61:1500–1507

    CAS  Google Scholar 

  18. Bagautdinov B, Kuroishi C, Sugahara Mitsuaki, Kunishima N (2005) J Mol Biol 353:322–333. doi:10.1016/j.jmb.2005.08.032

    Article  PubMed  CAS  Google Scholar 

  19. Lokanath NK, Ohshima N, Takio K, Shiromizu I, Kuroishi C, Okazaki N et al (2005) J Mol Biol 352:905–917. doi:10.1016/j.jmb.2005.07.068

    Article  PubMed  CAS  Google Scholar 

  20. Kunishima N, Asada Y, Sugahara Mayumi, Ishijima J, Nodake Y, Sugahara Mitsuaki, Miyano M, Kuramitsu S, Yokoyama S, Sugahara M (2005) J Mol Biol 352:212–228. doi:10.1016/j.jmb.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  21. Lokanath NK, Kuroishi C, Okazaki N, Kunishima N (2005) Proteins 58:769–773. doi:10.1002/prot.20345

    Article  PubMed  CAS  Google Scholar 

  22. Sugahara M, Nodake Y, Sugahara Mitsuaki, Kunishima N (2005) Proteins 58:249–252. doi:10.1002/prot.20281

    Article  PubMed  CAS  Google Scholar 

  23. Lokanath NK, Matsuura Y, Kuroishi C, Takahashi N, Kunishima N (2007) J Mol Biol 366:33–44. doi:10.1016/j.jmb.2006.11.088

    Article  CAS  Google Scholar 

  24. Bagautdinov B, Kunishima N (2007) J Mol Biol 373:424–438. doi:10.1016/j.jmb.2007.08.017

    Article  PubMed  CAS  Google Scholar 

  25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  26. Kadima W, McPherson A, Dunn MF, Jurnak FA (1990) Biophys J 57:125–132

    PubMed  CAS  Google Scholar 

  27. Chayen NE, Shaw Stewart PD, Maeder DL, Blow DM (1990) J Appl Cryst 23:297–302. doi:10.1107/S0021889890003260

    Article  CAS  Google Scholar 

  28. Kawabata K, Takahashi M, Saitoh K, Asama H, Mishima T, Sugahara Mitsuaki, Miyano M (2006) Acta Crystallogr D62:239–245

    CAS  Google Scholar 

  29. Kawabata K, Saitoh K, Takahashi M, Sugahara Mitsuaki, Asama H, Mishima T, Miyano M (2006) Acta Crystallogr D62:1066–1072

    CAS  Google Scholar 

  30. Berry IM, Dym O, Esnouf RM, Harlos K, Meged R, Perrakis A et al (2006) Acta Crystallogr D62:1137–1149

    CAS  Google Scholar 

  31. Stevens RC (2000) Curr Opin Struct Biol 10:558–563. doi:10.1016/S0959-440X(00)00131-7

    Article  PubMed  CAS  Google Scholar 

  32. McPherson A, Shlichta P (1988) Science 239:385–387. doi:10.1126/science.239.4838.385

    Article  PubMed  CAS  Google Scholar 

  33. Chayen NE, Saridakis E, EI-Bahar R, Nemirovsky Y (2001) J Mol Biol 312:591–595. doi:10.1006/jmbi.2001.4995

    Article  PubMed  CAS  Google Scholar 

  34. Chayen NE, Saridakis E, Sear RP (2006) Proc Natl Acad Sci USA 103:597–601. doi:10.1073/pnas.0504860102

    Article  PubMed  CAS  Google Scholar 

  35. Ida K, Yamamoto T, Kumasaka T, Ueno G, Kanda H, Yokozawa Y et al (2002) Acta Crystallogr A 58(Suppl.):C300

    Article  Google Scholar 

  36. Cipriani F, Felisaz F, Launer L, Aksoy JS, Caserotto H, Cusack S et al (2006) Acta Crystallogr D62:1251–1259

    CAS  Google Scholar 

  37. Snell G, Cork C, Nordmeyer R, Cornell E, Meigs G, Yegian D et al (2004) Structure 12:537–545. doi:10.1016/j.str.2004.03.011

    Article  PubMed  CAS  Google Scholar 

  38. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  39. Ueno G, Kanda H, Kumasaka T, Yamamoto M (2005) J Synchr Rad 12:380–384. doi:10.1107/S0909049505004735

    Article  Google Scholar 

  40. Kim KM, Yi EC, Baker D, Zhang KYJ (2001) Acta Crystallogr D57:759–762

    CAS  Google Scholar 

  41. Johnson JL, Rajagopalan KV (1977) J Biol Chem 252:2017–2025

    PubMed  CAS  Google Scholar 

  42. Rypniewski WR, Holden HM, Rayment I (1993) Biochemistry 32:9851–9858. doi:10.1021/bi00088a041

    Article  PubMed  CAS  Google Scholar 

  43. Czepas J, Devedjiev Y, Krowarsch D, Derewenda U, Otlewski J, Derewenda ZS (2004) Acta Crystallogr D60:275–280

    CAS  Google Scholar 

  44. Cooper DR, Boczek T, Grelewska K, Pinkowska M, Sikorska M, Zawadzki M et al (2007) Acta Crystallogr D63:636–645

    CAS  Google Scholar 

  45. Heras B, Martin JL (2005) Acta Crystallogr D61:1173–1180

    CAS  Google Scholar 

  46. Newman J (2006) Acta Crystallogr D62:27–31

    CAS  Google Scholar 

  47. Terwilliger TC, Berendzen J (1999) Acta Crystallogr D55:849–861

    CAS  Google Scholar 

  48. Vagin A, Teplyakov A (2000) Acta Crystallogr D56:1622–1624

    CAS  Google Scholar 

  49. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Acta Crystallogr D55:484–491

    CAS  Google Scholar 

  50. Terwilliger TC (1999) Acta Crystallogr D55:1863–1871

    CAS  Google Scholar 

  51. Perrakis A, Morris RM, Lamzin VS (1999) Nat Struct Biol 6:458–463. doi:10.1038/8263

    Article  PubMed  CAS  Google Scholar 

  52. La Fortelle E, Bricogne G (1997) Methods Enzymol 276:472–494. doi:10.1016/S0076-6879(97)76073-7

    Article  Google Scholar 

  53. Schneider TR, Sheldrick GM (2002) Acta Crystallogr D58:1772–1779

    CAS  Google Scholar 

  54. Miller R, Gallo SM, Khalak HG, Weeks CM (1994) J Appl Cryst 27:613–621. doi:10.1107/S0021889894000191

    Article  CAS  Google Scholar 

  55. Weeks CM, Miller R (1999) Acta Crystallogr D55:492–500

    CAS  Google Scholar 

  56. Hendrickson WA, Horton JR, LeMaster DM (1990) EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  57. Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse–Kunstleve RW et al (1998) Acta Crystallogr D54:905–921

    Google Scholar 

  58. Yao M, Zhou Y, Tanaka I (2006) Acta Crystallogr D62:189–196

    CAS  Google Scholar 

  59. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  60. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR et al (1977) J Mol Biol 112:535–542. doi:10.1016/S0022-2836(77)80200-3

    Article  PubMed  CAS  Google Scholar 

  61. Chayen NE, Saridakis E (2008) Nat Methods 5:147–153. doi:10.1038/nmeth.f.203

    Article  PubMed  CAS  Google Scholar 

  62. Holm L, Sander C (1995) Trends Biochem Sci 20:478–480. doi:10.1016/S0968-0004(00)89105-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Of the authors, Michi. S. contributed principally to this work, solving structures and writing the paper; YA solved structures and contributed to the automated structure determination using PERON; KS solved structures and contributed to the automated diffraction experiment using SPACE; HY solved structures and contributed to large-scale protein production; NKL, HM, and BB solved structures; YM, MT, YK, NO, YM, YT, HS, and TN contributed to the construction of the structure determination pipeline; Mitsu. S. contributed to automated crystallization using TERA; MY contributed to the automated diffraction experiment using SPACE; NK supervised this work and wrote the paper. The authors would like to thank the staff of the RIKEN Genomic Science Center and the Structurome Research Group for providing plasmids, the technical staff of the RIKEN SPring-8 Center for assistance in the large-scale protein production, the beamline staff for assistance during the data collection at the BL26B1/B2 of SPring-8, and Drs M. Miyano, T. Iizuka, S. Yokoyama, and T. Ishikawa for their direction of the APCR-group. This work was supported by the “National Project on Protein Structural and Functional Analyses” funded by the Ministry of Education, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Kunishima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugahara, M., Asada, Y., Shimizu, K. et al. High-throughput crystallization-to-structure pipeline at RIKEN SPring-8 Center. J Struct Funct Genomics 9, 21–28 (2008). https://doi.org/10.1007/s10969-008-9042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-008-9042-y

Keywords

Navigation