Skip to main content
Log in

Transport and retention of strontium in surface-modified quartz sand with different wettability

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Instead of radioactive 90Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr2+) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr2+ in these media were analyzed with the equilibrium convection–dispersion equation (CDE) and a non-equilibrium two-region mobile–immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr2+, and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr2+. Although TRM model could not fit the Sr2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr2+ in these kind of sand is non-equilibrium processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider M, Thomas S, Froggatt A, Koplow D (2009) The world nuclear industry status report 2009, Paris, p 5

  2. Nash KL, Lumetta GJ, Clark SB, Clark SB, Friese J (2006) Separations for the nuclear fuel cycle in the 21st century. Oxford University Press, Washington DC

    Google Scholar 

  3. Long JCS (2004) Annu Rev Earth Planet Sci 32:363

    Article  CAS  Google Scholar 

  4. Bradford SA, Rathfelder KM, Lang J, Abriola LM (2003) J Contam Hydrol 67:133

    Article  CAS  Google Scholar 

  5. Ritsema CJ, Dekker LW (1994) Water Res Res 30:2519

    Article  Google Scholar 

  6. Ritsema CJ, Dekker LW (1996) Aust J Soil Res 34:475

    Article  Google Scholar 

  7. Quyum A, Achari G, Goodman RH (2002) Sci Total Environ 296:77

    Article  CAS  Google Scholar 

  8. O’Carroll DM, Bradford SA, Abriola M (2001) J Contam Hydrol 73:39

    Article  Google Scholar 

  9. Crist JT, Zevi Y, McCarthy JF, Troop JA, Steenhuis TS (2005) Vadose Zone J 4:184

    CAS  Google Scholar 

  10. Zuo R, Teng YU, Wang JS (2009) J Radioanal Nucl Chem 279:893

    Article  CAS  Google Scholar 

  11. Sun J, Wu T, Liu F, Wang Z, Zhang X (2000) Langumir 16:4620

    Article  CAS  Google Scholar 

  12. Nieber JL, Bauters TWJ, Steenhuis TS, Parlange JY (2000) J Hydrol 231:295

    Article  Google Scholar 

  13. Bachmann J, Woche SK, Goebel MO (2003) Water Res Res 39:1353

    Article  Google Scholar 

  14. Dekker LW, Ritsema CJ (2000) J Hydrol 231:148

    Article  Google Scholar 

  15. Neumann AW, Good RJ (1972) J Colloid Interf Sci 38:341

    Article  CAS  Google Scholar 

  16. Tsai TL, Lee CP, Lin TY, Wei HJ, Men LC (2010) J Radioanal Nucl Chem 285:733

    Article  CAS  Google Scholar 

  17. Wang X, Chen Y, Wu Y (2004) J Radioanal Nucl Chem 261:497

    Article  CAS  Google Scholar 

  18. Li N, Ren L (2009) J Contam Hydrol 108:134

    Article  CAS  Google Scholar 

  19. Mao M, Ren L (2004) Ground Water 42:500

    Article  CAS  Google Scholar 

  20. Pot V, Genty A (2007) Adv Water Resour 30:273

    Article  Google Scholar 

  21. Wang JS, Zuo R, Teng YU, Hu QH, Sun ZJ (2010) J Radioanal Nucl Chem 283:319

    Article  CAS  Google Scholar 

  22. Venkatesan KA, Sukumaran V, Antony MP, Srinivasan TG (2009) J Radioanal Nucl Chem 280:129

    Article  CAS  Google Scholar 

  23. Weerasooriya R, Dharmasena B, Aluthpatabendi D (2000) Colloids Surf A 170:65

    Article  CAS  Google Scholar 

  24. Fiol N, Villaescusa I, Martínez M, Miralles N (2006) Sep Purif Tech 50:132

    Article  CAS  Google Scholar 

  25. Wang YL, Lieberman M (2003) Langmuir 19:1159

    Article  CAS  Google Scholar 

  26. Ou J, Perot B, Rothstein JP (2004) Phys Fluids 16:4635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of China (No. 40872199), the Natural Science Foundation of Shanxi Province (No. 2010021012_0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tian, S. & Qian, T. Transport and retention of strontium in surface-modified quartz sand with different wettability. J Radioanal Nucl Chem 289, 337–343 (2011). https://doi.org/10.1007/s10967-011-1117-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1117-8

Keywords

Navigation