Skip to main content
Log in

Characterization and Structural Analysis of Hepcidin Like Antimicrobial Peptide From Schizothorax richardsonii (Gray)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host’s innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5′ and 3′ UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mookherjee N, Hancock REW (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci Rev 64:922–933

    Article  CAS  Google Scholar 

  2. Janeway CA, Medzhitov R (2002) Innate immune recognition. Ann Rev Immunol 20:197–216

    Article  CAS  Google Scholar 

  3. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  CAS  Google Scholar 

  4. Cuesta A, Mesegure J, Esteban MA (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol 45:2333–2342

    Article  CAS  Google Scholar 

  5. Shi J, Camus AC (2006) Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones? Dev Comp Immunol 30:746–755

    Article  CAS  Google Scholar 

  6. Yang M, Wang KL, Chen JH, Qu HD, Li SJ (2007) Genomic organization and tissue expression analysis of hepcidin-like genes from black porgy (Acanthopagrus schlegelii B.). Fish Shellfish Immunol 23:1060–1071

    Article  CAS  Google Scholar 

  7. Falco A, Chico V, Marroqui L, Perez L, Coll JM, Estepa A (2008) Expression and antiviral activity of a beta-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol Immunol 45:757–765

    Article  CAS  Google Scholar 

  8. Piers KL, Brown MH, Hancock RE (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38:2311–2316

    Article  CAS  Google Scholar 

  9. Rinaldi AC (2002) Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Bio 6:82–88

    Google Scholar 

  10. Chen JY, Lin WJ, Lin TL (2009) A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30:1636–1642

    Article  CAS  Google Scholar 

  11. Chang WT, Pan CY, Rajanbabu V, Cheng CW, Chen JY (2011) Tilipia (Oreochomis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides 32:342–352

    Article  CAS  Google Scholar 

  12. Patrzykat A, Douglas SE (2003) Gone gene fishing: how to catch noval marine antimicrobials. Trends Biotechnol 21:362–369

    Article  CAS  Google Scholar 

  13. Bao B, Peatman E, Xu P, Li P, Zeng H, He C, Liu Z (2006) The catfish liver-expressed antimicrobial peptide 2 (LEAP-2) gene is expressed in a wide range of tissues and developmentally regulated. Mol Immonol 43:367–377

    Article  CAS  Google Scholar 

  14. Krause A, Neitz S, Magert AS, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  CAS  Google Scholar 

  15. Liang T, Ji W, Zhang GR, Wei KJ, Feng K, Wang WM, Zou GW (2013) Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 35:553–563

    Article  CAS  Google Scholar 

  16. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  CAS  Google Scholar 

  17. Hunter HN, Fulton DB, Ganz T, Vogel HJ (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277:37597–37603

    Article  CAS  Google Scholar 

  18. Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE, Pennington MW, Norton RS, Westerman ME (2005) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 280:9272–9282

    Article  CAS  Google Scholar 

  19. Wang KJ, Cai JJ, Cai L, Qu HD, Yang M, Zhang M (2009) Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides 30:638–646

    Article  CAS  Google Scholar 

  20. Zhang J, Yan Q, Ji R, Zou W, Guo G (2009) Isolation and characterization of a hepcidin peptide from the head kidney of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol 26:864–870

    Article  CAS  Google Scholar 

  21. Hirono I, Hwang JY, Ono Y, Kurobe T, Ohira T, Nozaki R, Aoki T (2005) Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus. FEBS J 2272:5257–5264

    Article  Google Scholar 

  22. Huang PH, Chen JY, Kuo CM (2007) Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Mol Immunol 44:1922–1934

    Article  CAS  Google Scholar 

  23. Zhou JG, Wei JG, Xu D, Cui HC, Yan Y, Ou-Yang ZL, Huang XH, Huang YH, Qin QW (2011) Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 30:559–568

    Article  CAS  Google Scholar 

  24. Yang M, Chen B, Cai JJ, Peng H, Ling C, Yuan JJ, Wang KJ (2011) Molecular characterization of hepcidin AS-hepc2 and AS-hepc6 in black porgy (Acanthopagrus schlegelii): expression pattern responded to bacterial challenge and in vitro antimicrobial activity. Comp Biochem Physiol B: Biochem Mol Biol 158:155–163

    Article  Google Scholar 

  25. Cai L, Cai JJ, Liu HP, Fan DQ, Peng H, Wang KJ (2012) Recombinant medaka (Oryzias melastigmus) pro-hepcidin: multifunctional characterization. Comp Biochem Physiol B 161:140–147

    Article  CAS  Google Scholar 

  26. Srinivasulu B, Syvitski R, Seo JK, Mattatall NR, Knickle LC, Douglas SE (2008) Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr Purif 61:36–44

    Article  CAS  Google Scholar 

  27. Shike H, Lauth X, Westerman ME, Ostlnd VE, Carlberg JM, Van Olst JC, Shimizu C, Bulet P, Burns JC (2002) Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 269:2232–2237

    Article  CAS  Google Scholar 

  28. Douglas SE, Gallant JW, Liebscher RS, Dacanay A, Tosi SCM (2003) Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev Comp Immunol 27:598–601

    Article  Google Scholar 

  29. Shike H, Shimizu C, Lauth X, Burns JC (2004) Organization and expression analysis of the zebrafish hepcidin gene, an antimicrobial peptide gene conserved among vertebrates. Dev Comp Immunol 28:747–754

    Article  CAS  Google Scholar 

  30. Kim YO, Hong S, Nam BH, Lee JH, Kim KK, Lee SJ (2005) Molecular cloning and expression analysis of two hepcidin genes from olive flounder (Paralichthys olivaceus). Biosci Biotechnol Biochem 69(7):1411–1414

    Article  CAS  Google Scholar 

  31. Chen SL, Xu MY, Ji XS, Yu GC, Liu Y (2005) Cloning, characterization, and expression analysis of hepcidin gene from red sea bream (Chrysophrys major). Antimicrob Agents Chemother 49:1608–1612

    Article  CAS  Google Scholar 

  32. Bao B, Peatman E, Li P, He C, Liu Z (2005) Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. Dev Comp Immunol 29:939–950

    Article  CAS  Google Scholar 

  33. Wang Q, Wang Y, Xu P, Liu Z (2006) NK-lysin of channel catfish: gene triplication, sequence variation, and expression analysis. Mol Immunol 43:1676–1686

    Article  CAS  Google Scholar 

  34. Chen SL, Li W, Meng L, Sha ZX, Wang ZJ, Ren GC (2007) Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish Shellfish Immunol 22:172–181

    Article  Google Scholar 

  35. Solstad T, Larsen AN, Seppola M, Jorgensen TO (2008) Identification, cloning and expression analysis of a hepcidin cDNA of the Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 25:298–310

    Article  CAS  Google Scholar 

  36. Rodrigues PN, Vazquez-Dorado S, Neves JV, Wilson JM (2006) Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol 30:1156–1167

    Article  CAS  Google Scholar 

  37. Pigeon C, Ilyin B, Courselaud P, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  CAS  Google Scholar 

  38. Ganz T (2002) The role of hepcidin in iron sequestration during infections and in the pathogenesis of anemia of chronic disease. IMAJ 4:1043–1045

    CAS  Google Scholar 

  39. Li H, Zhang F, Guo H, Zhu Y, Yuan J, Yang G, An L (2013) Molecular characterization of hepcidin gene in common carp (Cyprinus carpio L.) and its expression pattern responding to bacterial challenge. Fish Shellfish Immunol 35:1030–1038

    Article  CAS  Google Scholar 

  40. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093

    Article  CAS  Google Scholar 

  41. Ashrafian H (2003) Hepcidin: the missing link between hemochromatosis and infections. Infect Immun 71:6693–6700

    Article  CAS  Google Scholar 

  42. Rossi E (2005) Hepcidin- the iron regulatory hormone. Clin Biochem Rev 26:47–49

    Google Scholar 

  43. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D (2005) Time course analysis of hepcidin, serum iron and plasma cytokine levels in human injected with LPS. Blood 106:1864–1866

    Article  CAS  Google Scholar 

  44. Hugman A (2006) Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol 28:75–83

    Article  CAS  Google Scholar 

  45. De Domenico I, Zhang TY, Koening C, Branch RW, London N, Lo E, Daynes AR, Kushner JP, Li D, Ward DM, Kaplan J (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 120:2395–2405

    Article  Google Scholar 

  46. Rajanbabu V, Pan CY, Lee SC, Lin CC, Li CL (2010) Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J Biol Chem 285:30577–30586

    Article  CAS  Google Scholar 

  47. Mangoni ML (2011) Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 68:2157–2159

    Article  CAS  Google Scholar 

  48. Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  Google Scholar 

  49. Keymanesh K, Soltani S, Soroush S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  50. Veliek J, Svobodova Z, Piakova V (2005) Effects of clove oil anaesthesia on rainbow trout (Oncorhynchus mykiss). Acta Vet Brno 74:139–146

    Article  Google Scholar 

  51. Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  52. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASY: the proteomics server for in depth protein knowledge and analysis. Nucleic Acid Res 31:3748–3788

    Article  Google Scholar 

  53. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607. http://link.springer.com/protocol/10.1385%2F1-59259-890-0%3A571

    Chapter  Google Scholar 

  54. Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  Google Scholar 

  55. Sali A (2011) MODELLER: a program for protein structure modeling release 9.10, r8346. Modeller. http://salilab.org/modeller/

  56. Krieger E, Koralmann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self parameterizing force field. Proteins 47:393–402

    Article  CAS  Google Scholar 

  57. Guex N, Peltsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative modelling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  58. Colovos C, Yeates TO (1993) Verification protein structures: patterns of non bonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  59. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490

    Article  CAS  Google Scholar 

  60. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574

    Article  CAS  Google Scholar 

  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  62. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  Google Scholar 

  63. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of procariotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  64. Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    Article  CAS  Google Scholar 

  65. Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12622

    Article  CAS  Google Scholar 

  66. Hancock REW, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  CAS  Google Scholar 

  67. Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE, Pennington MW, Norton RS, Westerman ME (2004) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism and in vivo hepatic response to bacterial infection. J Biol Chem 280:9272–9282

    Article  Google Scholar 

  68. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, Directorate of Coldwater Fisheries Research for providing the necessary facilities and Department of Biotechnology, Government of India for the Grant BT/PR12760/AAQ/03/477/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, P., Dhanik, M. & Pande, A. Characterization and Structural Analysis of Hepcidin Like Antimicrobial Peptide From Schizothorax richardsonii (Gray). Protein J 33, 1–10 (2014). https://doi.org/10.1007/s10930-013-9530-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9530-1

Keywords

Navigation