Skip to main content
Log in

Water Transport in Polylactide and Polylactide/Montmorillonite Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactide–montmorillonite composites were fabricated by melt-blending followed by compression molding, and water permeability of the composites was studied by both experiments and theoretical models. The water permeation in composites decreases with increasing concentration of montmorillonite. Specifically, at a concentration of 10 wt% of montmorillonite, the water permeation is 34 % less than in the neat polymer. Transmission electron microscopy (TEM) and wide-angle X-ray scattering (WAXS) results show that most of the montmorillonite particles are well-dispersed and randomly exfoliated in the polymer matrix. A fit of theoretical models to the permeation data estimates that montmorillonite platelets are mostly exfoliated in the polymer matrix and oriented randomly, which matches with results from WAXS and TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Oliveira NS, Dorgan J, Coutinho JAP, Ferreira A, Daridon JL, Marrucho IM (2007) J Polym Sci Pol Phys 45:616–625

    Article  CAS  Google Scholar 

  3. Oliveira NS, Goncalves CM, Coutinho JAP, Ferreira A, Dorgan J, Marrucho IM (2006) Fluid Phase Equilib 250:116–124

    Article  CAS  Google Scholar 

  4. Oliveira NS, Oliveira J, Gomes T, Ferreira A, Dorgan J, Marrucho IM (2004) Fluid Phase Equilib 222:317–324

    Article  Google Scholar 

  5. Cairncross RA, Ramaswamy S, O’Connor R (2007) Int Polym Process 22:33–37

    CAS  Google Scholar 

  6. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Polym Eng Sci 48:1359–1368

    Article  CAS  Google Scholar 

  7. Otsuka H, Nagasaki Y, Kataoka K (2000) Biomacromolecules 1:39–48

    Article  CAS  Google Scholar 

  8. Tsuji H, Muramatsu H (2001) J Appl Polym Sci 81:2151–2160

    Article  CAS  Google Scholar 

  9. Gorrasi G, Tammaro L, Vittoria V, Paul MA, Alexandre M, Dubois P (2004) J Macromol Sci Phys B43:565–575

    CAS  Google Scholar 

  10. Krikorian V, Pochan DJ (2003) Chem Mater 15:4317–4324

    Article  CAS  Google Scholar 

  11. Koo D, Du A, Palmese GR, Cairncross RA (2012) Polym Chem UK 3:9

    Google Scholar 

  12. Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) J Appl Polym Sci 86:1497–1506

    Article  CAS  Google Scholar 

  13. Zenkiewicz M, Richert J (2008) Polym Test 27:835–840

    Article  CAS  Google Scholar 

  14. Bharadwaj RK (2001) Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  15. Bouma RHB, Checchetti A, Chidichimo G, Drioli E (1997) J Membr Sci 128:141–149

    Article  CAS  Google Scholar 

  16. Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Prog Polym Sci 32:483–507

    Article  CAS  Google Scholar 

  17. Gonzo EE, Parentis ML, Gottifredi JC (2006) J Membr Sci 277:46–54

    Article  CAS  Google Scholar 

  18. Mahajan R, Koros WJ (2002) Polym Eng Sci 42:1420–1431

    Article  CAS  Google Scholar 

  19. Moore TT, Koros WJ (2005) J Mol Struct 739:87–98

    Article  CAS  Google Scholar 

  20. Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) AIChE J 50:311–321

    Article  CAS  Google Scholar 

  21. Pal R (2008) J Colloid Interf Sci 317:191–198

    Article  CAS  Google Scholar 

  22. Napadensky E, Elabd YA (2004) Breathability and Selectivity of Selected Materials for Protective Clothing, ARL-TR-3235, July 2004

  23. Wong W-K, Cheng S, Li CY, Ahmad I, Cairncross R, Hsuan YG (2012) Polym Degrad Stab 97:192–199

    Article  CAS  Google Scholar 

  24. Ray SS, Okamoto M (2003) Macromol Rapid Commun 24:815–840

    Article  CAS  Google Scholar 

  25. Du A, Koo D, Ziegler M, Cairncross RA (2011) J Polym Sci Part B Polym Phys 49:873–881

    Article  CAS  Google Scholar 

  26. Komatsuka T, Kusakabe A, Nagai K (2008) Desalination 234:212–220

    Article  CAS  Google Scholar 

  27. Koo D, Du A, Palmese GR, Cairncross RA (2012) Polymer 53:1115–1123

    Article  CAS  Google Scholar 

  28. Siparsky G, Voorhees K, Dorgan J, Schilling K (1997) J Polym Environ 5:125–136

    CAS  Google Scholar 

  29. Vittoria V (1995) J Mater Sci 30:3954–3958

    Article  CAS  Google Scholar 

  30. Auras RA, Harte B, Selke S, Hernandez R (2003) J Plast Film Sheet 19:123–135

    Article  CAS  Google Scholar 

  31. Drieskens M, Peeters R, Mullens J, Franco D, Lemstra PJ, Hristova-Bogaerds DG (2009) J Polym Sci Pol Phys 47:2247–2258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by USDA Biomass Research and Development Initiative, funding number DE-PS36-06GO96002P. Commercial PLA samples were provided by NatureWorks, LLC and organically modified clay (montmorillonite) was provided by Southern Clay Product, Inc. Access to experimental instruments in the laboratory of Giuseppe Palmese (Chemical and Biological Eng), Christopher Li (Materials Sci. and Eng) and the Drexel Centralized Research Facility is acknowledged. Thanks to Fatima Nia Roodsari (Polymer Processing Group, University of Calgary) for mixing and compression molding experiments. Discussions with Marc Hillmyer (U. Minnesota, Chemistry Dept.), Shri Ramaswamy (U. Minnesota, Bio-based products Dept.) and Yossef Elabd (Chemical Eng.) were also helpful for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cairncross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, A., Gelves, G.A., Koo, D. et al. Water Transport in Polylactide and Polylactide/Montmorillonite Composites. J Polym Environ 21, 8–15 (2013). https://doi.org/10.1007/s10924-012-0540-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0540-4

Keywords

Navigation