Skip to main content
Log in

Properties of poly(lactic acid)/montmorillonite/carbon nanotubes nanocomposites: determination of percolation threshold

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Incorporation of rigid nanoparticles is the most effective means of improving polymer properties. Montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNTs) are legendary in this field for their individual exceptional properties. A synergistic phenomenon is induced between these two particles when they are simultaneously incorporated into polymers. At a definite nanofillers concentration, called the percolation threshold, there is a sudden change in nanocomposite properties due to the formation of a 3D-structured network of the nanoparticles within the matrix. In this work, the properties of poly(lactic acid) (PLA) nanocomposites filled with different fractions of MMT/MWCNTs hybrid (0.5–2.0 wt%) were analyzed. In particular, the percolation threshold of the MMT/MWCNTs hybrid was uniquely identified by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical thermal analysis. The structural studies by X-ray diffraction and Fourier-transform infrared spectroscopy were also associated with the percolation threshold of MMT/MWCNTs in PLA. At 1.0 wt% MMT/MWCNTs concentration, the complete exfoliation of the particles was maintained, and the thermal characteristics such as glass transition, crystallization and melting temperatures reached their plateau at this hybrid concentration. Moreover, the thermal degradation and viscoelastic parameters showed their peak values at this critical point, which is correlated with the formation of the percolation threshold within the matrix. The morphological studies confirmed the homogeneous dispersion of MMT/MWCNTs in PLA up to a concentration of 1.0 wt%. At 2.0 wt% MMT/MWCNTs, few aggregations occurred in the PLA-based composite, confirming that the percolation threshold was formed at a lower concentration of MMT/MWCNTs nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pitchan MK, Bhowmik S, Balachandran M, Abraham M (2017) Process optimization of functionalized MWCNT/polyetherimide nanocomposites for aerospace application. Mater Des 127:193–203. https://doi.org/10.1016/j.matdes.2017.04.081

    Article  CAS  Google Scholar 

  2. da Rocha SAC, Rodrigues Menezes L, da Silva EO, Pedrosa MCG (2020) Synergistic effect of carbon nanoparticles on the mechanical and thermal properties of poly(lactic acid) as promising systems for packaging. J Compos Mater 54:4133–44. https://doi.org/10.1177/0021998320927779

    Article  CAS  Google Scholar 

  3. Sanusi OM, Komolafe OD, Ogundana TO, Olaleke MO, Sanni YY (2016) Development of wood-ash/resin polymer matrix composite for body armour application. FUOYE J Eng Technol 1:10–14. https://doi.org/10.46792/fuoyejet.v1i1.4

    Article  Google Scholar 

  4. Hosseini SM, Yousefi AA (2017) Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Org Electron 50:121–129. https://doi.org/10.1016/j.orgel.2017.07.035

    Article  CAS  Google Scholar 

  5. Cao M, Du C, Guo H, Songa S, Li X, Li B (2019) Continuous network of CNTs in poly(vinylidene fluoride) composites with high thermal and mechanical performance for heat exchangers. Compos Sci Technol 173:33–40. https://doi.org/10.1016/j.compscitech.2019.01.023

    Article  CAS  Google Scholar 

  6. Al Sheheri SZ, Al-Amshany ZM, Al Sulami QA, Tashkandi NY, Hussein MA, El-Shishtawy RM (2019) The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym 22:8–53. https://doi.org/10.1080/15685551.2019.1565664

    Article  CAS  Google Scholar 

  7. Papadopoulos L, Klonos PA, Terzopoulou Z, Psochia E, Sanusi OM, Aït Hocine N et al (2021) Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings. Polymer 217:123457. https://doi.org/10.1016/j.polymer.2021.123457

    Article  CAS  Google Scholar 

  8. Liu S, Wu G, Chen X, Zhang X, Yu J, Liu M et al (2019) Degradation behavior in vitro of carbon nanotubes (CNTs)/poly(lactic acid) (PLA) composite suture. Polymers 11:1015. https://doi.org/10.3390/polym11061015

    Article  CAS  Google Scholar 

  9. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95:2563–2573. https://doi.org/10.1016/j.polymdegradstab.2010.07.031

    Article  CAS  Google Scholar 

  10. Zhuang W, Liu J, Zhang JH, Hu BX, Shen J (2009) Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization. Polym Compos 30:1074–1080. https://doi.org/10.1002/pc.20658

    Article  CAS  Google Scholar 

  11. Sanusi OM, Benelfellah A, Bikiaris DN, Aït Hocine N (2021) Effect of rigid nanoparticles and preparation techniques on the performances of poly(lactic acid) nanocomposites: a review. Polym Adv Technol 32:444–460. https://doi.org/10.1002/pat.5104

    Article  CAS  Google Scholar 

  12. Liu C, Shen J, Yeung KWK, Tjong SC (2017) Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning. ACS Biomater Sci Eng 3:471–486. https://doi.org/10.1021/acsbiomaterials.6b00766

    Article  CAS  Google Scholar 

  13. Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T et al (2016) Degradation of poly(butylene succinate) and poly(butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int Biodeterior Biodegrad 110:99–107. https://doi.org/10.1016/j.ibiod.2016.03.005

    Article  CAS  Google Scholar 

  14. Wu Y, Xiong W, Zhou H, Li H, Xu G, Zhao J (2016) Biodegradation of poly(butylene succinate) film by compost microorganisms and water soluble product impact on mung beans germination. Polym Degrad Stab 126:22–30. https://doi.org/10.1016/j.polymdegradstab.2016.01.009

    Article  CAS  Google Scholar 

  15. Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach. Mater Des 88:1277–1289. https://doi.org/10.1016/j.matdes.2015.09.081

    Article  CAS  Google Scholar 

  16. Aydoğan B, Usta N (2019) Fire behaviour assessment of rigid polyurethane foams containing nanoclay and intumescent flame retardant based on cone calorimeter tests. J Chem Technol Metall 54:55–63

    Google Scholar 

  17. Boumbimba RM, Coulibaly M, Peng Y, N’souglo EK, Wang K, Gerard P (2018) Investigation of the impact response of PMMA-based nano-rubbers under various temperatures. J Polym Res 25:76. https://doi.org/10.1007/s10965-018-1479-5

    Article  CAS  Google Scholar 

  18. Sanusi OM, Papadopoulos L, Klonos PA, Terzopoulou Z, Aït Hocine N, Benelfellah A et al (2020) Calorimetric and dielectric study of renewable poly(hexylene 2,5-furan-dicarboxylate)-based nanocomposites in situ filled with small amounts of graphene platelets and silica nanoparticles. Polymers 12:1239. https://doi.org/10.3390/POLYM12061239

    Article  CAS  Google Scholar 

  19. López-Barroso J, Martínez-Hernández AL, Rivera-Armenta JL, Velasco-Santos C (2018) Multidimensional nanocomposites of epoxy reinforced with 1D and 2D carbon nanostructures for improve fracture resistance. Polymers 10:281. https://doi.org/10.3390/polym10030281

    Article  CAS  Google Scholar 

  20. Hassanabadi HM, Wilhelm M, Rodrigue D (2014) A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 53:869–882. https://doi.org/10.1007/s00397-014-0804-0

    Article  CAS  Google Scholar 

  21. Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386. https://doi.org/10.1016/j.carbon.2012.07.021

    Article  CAS  Google Scholar 

  22. Haghgoo M, Hassanzadeh-Aghdam MK, Ansari R (2020) A comprehensive evaluation of piezoresistive response and percolation behavior of multiscale polymer-based nanocomposites. Compos Part A Appl Sci Manuf 130:105735. https://doi.org/10.1016/j.compositesa.2019.105735

    Article  CAS  Google Scholar 

  23. Xu D, Wang Z (2008) Role of multi-wall carbon nanotube network in compositesto crystallization of isotactic polypropylene matrix. Polymer 49:330–338. https://doi.org/10.1016/j.polymer.2007.11.041

    Article  CAS  Google Scholar 

  24. Sa K, Mahakul PC, Subramanyam BVRS, Raiguru J, Das S, Alam I, et al (2018) Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites. IOP Conf Ser Mater Sci Eng 338:012055. https://doi.org/10.1088/1757-899X/338/1/012055

  25. Dorozhkin KV, Dunaevsky GE, Sarkisov SY, Suslyaev VI, Tolbanov OP, Zhuravlev VA et al (2017) Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites. Mater Res Express 4:106201. https://doi.org/10.1088/2053-1591/aa8f06

    Article  CAS  Google Scholar 

  26. Khan S, Bedi HS, Agnihotri PK (2018) Augmenting mode-II fracture toughness of carbon fiber/epoxy composites through carbon nanotube grafting. Eng Fract Mech 204:211–220. https://doi.org/10.1016/j.engfracmech.2018.10.014

    Article  Google Scholar 

  27. Abidin MSZ, Herceg T, Greenhalgh ES, Shaffer M, Bismarck A (2019) Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Compos Sci Technol 170:85–92. https://doi.org/10.1016/j.compscitech.2018.11.017

    Article  CAS  Google Scholar 

  28. Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met 209:41–46. https://doi.org/10.1016/j.synthmet.2015.06.023

    Article  CAS  Google Scholar 

  29. Al-Saleh MH (2017) Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites. Compos Sci Technol 149:34–40. https://doi.org/10.1016/j.compscitech.2017.06.009

    Article  CAS  Google Scholar 

  30. Koo J (2016) Environmental and health impacts for nanomaterials and polymer nanocomposites. In: Koo J (ed) Fundamentals, properties, and applications of polymer nanocomposites. Cambridge University Press, Cambridge, pp 605–47

    Google Scholar 

  31. Stloukal P, Pekařová S, Kalendova A, Mattausch H, Laske S, Holzer C et al (2015) Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag 42:31–40. https://doi.org/10.1016/j.wasman.2015.04.006

    Article  CAS  Google Scholar 

  32. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2018) Impact of nanoclays on the biodegradation of poly(lactic acid) nanocomposites. Polymers 10:1–21. https://doi.org/10.3390/polym10020202

    Article  CAS  Google Scholar 

  33. Gorrasi G, D’Ambrosio S, Patimo G, Pantani R (2014) Hybrid clay-carbon nanotube/PET composites: preparation, processing, and analysis of physical properties. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.40441

    Article  CAS  Google Scholar 

  34. Ma R, Zhu B, Zeng Q, Wang P, Wang Y, Liu C et al (2019) Melt-processed poly(ether ether ketone)/carbon nanotubes/montmorillonite nanocomposites with enhanced mechanical and thermomechanical properties. Materials 12:1–14. https://doi.org/10.3390/ma12030525

    Article  CAS  Google Scholar 

  35. Azam MU, Samad MA (2018) UHMWPE hybrid nanocomposite coating reinforced with nanoclay and carbon nanotubes for tribological applications under water with/without abrasives. Tribol Int 124:145–155. https://doi.org/10.1016/j.triboint.2018.04.003

    Article  CAS  Google Scholar 

  36. Stern N, Dyamant I, Shemer E, Hu X, Marom G (2018) Hybrid effects in the fracture toughness of polyvinyl butyral-based nanocomposites. Nanocomposites 4:1–9. https://doi.org/10.1080/20550324.2018.1447827

    Article  CAS  Google Scholar 

  37. Mumtazah Z, Priyangga A, Atmaja L (2019) Some properties of membrane based on chitosan/phthalic anhydride matrices using montmorillonite/multi-walled carbon nanotubes filler for DMFC application. Int Conf Sci Appl Sci 020066:1–6. https://doi.org/10.1063/1.5141679.

    Article  Google Scholar 

  38. Pandey P, Mohanty S, Nayak SK (2014) Improved flame retardancy and thermal stability of polymer/clay nanocomposites, with the incorporation of multiwalled carbon nanotube as secondary filler: evaluation of hybrid effect of nanofillers. High Perform Polym 26:826–836. https://doi.org/10.1177/0954008314531802

    Article  CAS  Google Scholar 

  39. Khajehpour M, Arjmand M, Sundararaj U (2014) Dielectric properties of multiwalled carbon nanotube/clay/polyvinylidene fluoride nanocomposites: effect of clay incorporation. Polym Compos 37:161–167. https://doi.org/10.1002/pc.23167

    Article  CAS  Google Scholar 

  40. Hosseini SM, Yousefi AA (2017) Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization. Iran Polym J 26:331–339. https://doi.org/10.1007/s13726-017-0522-4

    Article  CAS  Google Scholar 

  41. Song SH (2016) Synergistic effect of clay platelets and carbon nanotubes in styrene–butadiene rubber nanocomposites. Macromol Chem Phys 217:2617–2625. https://doi.org/10.1002/macp.201600344

    Article  CAS  Google Scholar 

  42. Al-Saleh MH (2015) Effect of clay addition on the properties of carbon nanotubes-filled immiscible polyethylene/polypropylene blends. J Macromol Sci Part B Phys 54:1259–1266. https://doi.org/10.1080/00222348.2015.1085753

    Article  CAS  Google Scholar 

  43. Sanusi OM, Benelfellah A, Papadopoulos L, Terzopoulou Z, Malletzidou L, Vasileiadis IG et al (2021) Influence of montmorillonite/carbon nanotube hybrid nanofillers on the properties of poly(lactic acid). Appl Clay Sci 201:105925. https://doi.org/10.1016/j.clay.2020.105925

    Article  CAS  Google Scholar 

  44. Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos Part A Appl Sci Manuf 73:204–231. https://doi.org/10.1016/j.compositesa.2015.02.021

    Article  CAS  Google Scholar 

  45. Sanusi OM, Benelfellah A, Aït Hocine N (2020) Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites—A review. Appl Clay Sci 185:105408. https://doi.org/10.1016/j.clay.2019.105408

    Article  CAS  Google Scholar 

  46. Santangelo S, Gorrasi G, Di Lieto R, De Pasquale S, Patimo G, Piperopoulos E et al (2011) Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl Clay Sci 53:188–194. https://doi.org/10.1016/j.clay.2010.12.013

    Article  CAS  Google Scholar 

  47. Gorrasi G, Milone C, Piperopoulos E, Lanza M, Sorrentino A (2013) Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Appl Clay Sci 71:49–54. https://doi.org/10.1016/j.clay.2012.11.004

    Article  CAS  Google Scholar 

  48. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C et al (2020) Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol 151:628–634. https://doi.org/10.1016/j.ijbiomac.2020.02.209

    Article  CAS  Google Scholar 

  49. Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A Appl Sci Manuf 41:954–963. https://doi.org/10.1016/j.compositesa.2010.03.004

    Article  CAS  Google Scholar 

  50. Zhu B, Bai T, Wang P, Wang Y, Liu C, Shen C (2020) Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Int J Biol Macromol 153:1272–1280. https://doi.org/10.1016/j.ijbiomac.2019.10.262

    Article  CAS  Google Scholar 

  51. Hassan H, Hocine NA, Médéric P, Deffarges MP, Poirot N (2015) Thermal and mechanical properties of PA12/C30B nanocomposites in relationship with nanostructure. J Appl Polym Sci 132:1–10. https://doi.org/10.1002/app.41938

    Article  CAS  Google Scholar 

  52. Gorrasi G, Piperopoulos E, Lanza M, Milone C (2013) Effect of morphology of the filler on the electrical behaviour of poly(L-lactide) nanocomposites. J Phys Chem Solids 74:1–6. https://doi.org/10.1016/j.jpcs.2012.08.006

    Article  CAS  Google Scholar 

  53. Galimberti M, Coombs M, Pandini S, Riccò T, Cipolletti V, Conzatti L et al (2015) Delamination of organically modified montmorillonite for reducing the filler networking with carbon black in poly(1,4-cis-isoprene) based nanocomposites. Appl Clay Sci 104:8–17. https://doi.org/10.1016/j.clay.2014.11.017

    Article  CAS  Google Scholar 

  54. Ha CS (2016) Poly(butylene terephthlate) (PBT) based nanocomposites. In: Mai Y-W, Yu Z-Z (eds) Polymer nanocomposites. Woodhead Publishing, England, pp 234–255

    Google Scholar 

  55. Shabanian M, Hajibeygi M, Hedayati K, Khaleghi M, Khonakdar HA (2016) New ternary PLA/organoclay-hydrogel nanocomposites: design, preparation and study on thermal, combustion and mechanical properties. Mater Des 110:811–820. https://doi.org/10.1016/j.matdes.2016.08.059

    Article  CAS  Google Scholar 

  56. Jia L, Zhang W, Tong B, Yang R (2019) Crystallization, flame-retardant, and mechanical behaviors of poly(lactic acid)\9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide–calcium montmorillonite nanocomposite. J Appl Polym Sci 136:46982. https://doi.org/10.1002/app.46982

    Article  CAS  Google Scholar 

  57. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM et al (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44:6496–6502. https://doi.org/10.1021/ma200842n

    Article  CAS  Google Scholar 

  58. Das K, Ray D, Banerjee I, Bandyopadhyay NR, Sengupta S, Mohanty AK et al (2010) Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. J Appl Polym Sci 118:143–151. https://doi.org/10.1002/app.32345

    Article  CAS  Google Scholar 

  59. Shameli K, Bin AM, Yunus MZWW, Ibrahim NA, Rahman RA, Jokar M et al (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579. https://doi.org/10.2147/ijn.s12007

    Article  CAS  Google Scholar 

  60. Huang Z, Wan Y, Peng M, Yang Z, Luo H (2020) Incorporating nanoplate-like hydroxyapatite into polylactide for biomimetic nanocomposites via direct melt intercalation. Compos Sci Technol 185:107903. https://doi.org/10.1016/j.compscitech.2019.107903

    Article  CAS  Google Scholar 

  61. Golovnev NN, Molokeev MS, Lesnikov MK, Atuchin VV (2016) First outer-sphere 1, 3-diethyl-2-thiobarbituric compounds [M(H2O)6] spectroscopic and thermal properties. Chem Phys Lett 653:54–59. https://doi.org/10.1016/j.cplett.2016.04.059

    Article  CAS  Google Scholar 

  62. Golovnev NN, Molokeev MS, Vereshchagin SN, Atuchin VV, Sidorenko MY, Dmitrushkov MS (2014) Crystal structure and properties of the precursor [Ni(H2O)6](HTBA)2.2H2O and the complexes M(HTBA)2(H2O)2 (M = Ni Co, Fe). Polyhedron 70:71–76. https://doi.org/10.1016/j.poly.2013.12.021

    Article  CAS  Google Scholar 

  63. Golovnev NN, Molokeev MS, Vereshchagin SN, Atuchin VV (2013) Calcium and strontium thiobarbiturates with discrete and polymeric structures. J Coord Chem 66:4119–4130. https://doi.org/10.1080/00958972.2013.860450

    Article  CAS  Google Scholar 

  64. Choksi N, Desai H (2017) Synthesis of biodegradable polylactic acid polymer by using lactic acid monomer. Int J Appl Chem 13:377–84

    Google Scholar 

  65. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318–2328. https://doi.org/10.1039/c6tc05261d

    Article  CAS  Google Scholar 

  66. Arjmandi R, Hassan A, Eichhorn SJ, Mohamad Haafiz MK, Zakaria Z, Tanjung FA (2015) Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J Mater Sci 50:3118–3130. https://doi.org/10.1007/s10853-015-8873-8

    Article  CAS  Google Scholar 

  67. Chen N, Feng H, Guo J, Luo H, Qiu J (2011) Biodegradable poly(lactic acid)/TDI-montmorillonite nanocomposites: preparation and characterization. Adv Mater Res 221:211–215

    Article  CAS  Google Scholar 

  68. Zhang X, Xu R, Wu Z, Zhou C (2003) The synthesis and characterization of polyurethane/clay nanocomposites. Polym Int 52:790–794. https://doi.org/10.1002/pi.1152

    Article  CAS  Google Scholar 

  69. Molinaro S, Cruz Romero M, Boaro M, Sensidoni A, Lagazio C, Morris M et al (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117:113–123. https://doi.org/10.1016/j.jfoodeng.2013.01.021

    Article  CAS  Google Scholar 

  70. Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z (2015) Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites. Int J Biol Macromol 81:91–99. https://doi.org/10.1016/j.ijbiomac.2015.07.062

    Article  CAS  Google Scholar 

  71. Seligra PG, Lamanna M, Fama L (2016) Promising PLA-functionalized MWCNT composites to use in nanotechnology. Polym Compos 37:915–924. https://doi.org/10.1002/pc.23504

    Article  CAS  Google Scholar 

  72. Terzopoulou Z, Klonos PA, Kyritsis A, Tziolas A, Avgeropoulos A, Papageorgiou GZ et al (2019) Interfacial interactions, crystallization and molecular mobility in nanocomposites of poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer 166:1–12. https://doi.org/10.1016/j.polymer.2019.01.041

    Article  CAS  Google Scholar 

  73. Chattopadhyay PK, Basuli U, Chattopadhyay S (2009) Studies on novel dual filler based epoxidized natural rubber nanocomposite. Polym Compos 31:835–846. https://doi.org/10.1002/pc.20866

    Article  CAS  Google Scholar 

  74. Vukić N, Ristić IS, Marinović-Cincović M, Radičević R, Pilić B, Cakić S et al (2019) Influence of different functionalization methods of multi-walled carbon nanotubes on the properties of poly(L-lactide) based nanocomposites. Hem Ind 73:183–196. https://doi.org/10.2298/HEMIND190402016V

    Article  Google Scholar 

  75. Sibeko MA (2012) Preparation and characterization of vinylsilane crosslinked high-density polyethylene composites filled with nanoclays. Polym compos 34(10):1720–1727. https://doi.org/10.1002/pc.22575

    Article  CAS  Google Scholar 

  76. Chu CC, Liu P, White KL, Sue HJ (2012) Electrical conductivity and thermal stability of polypropylene containing disentangled carbon nanotubes. Carbon 50:4711–4722. https://doi.org/10.1016/j.carbon.2012.05.063

    Article  CAS  Google Scholar 

  77. Singla RK, Maiti SN, Ghosh AK (2016) Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J Mater Sci 51:10278–10292. https://doi.org/10.1007/s10853-016-0255-3

    Article  CAS  Google Scholar 

  78. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2014) Processing and characterization of polypropylene filled with multiwalled carbon nanotube and clay hybrid nanocomposites. Int J Polym Anal Charact 19:363–371. https://doi.org/10.1080/1023666X.2014.902715

    Article  CAS  Google Scholar 

  79. Zhang X, Zhang Y (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382. https://doi.org/10.1016/j.carbpol.2015.12.073

    Article  CAS  Google Scholar 

  80. Jesuarockiam N, Jawaid M, Zainudin ES, Hameed Sultan MT, Yahaya R (2019) Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 11:1085. https://doi.org/10.3390/polym11071085

    Article  CAS  Google Scholar 

  81. Krishnaiah P, Ratnam CT, Manickam S (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595. https://doi.org/10.1016/j.clay.2016.10.046

    Article  CAS  Google Scholar 

  82. Coppola B, Cappetti N, Di ML, Scarfato P, Incarnato L (2018) 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials 11:1–17. https://doi.org/10.3390/ma11101947

    Article  CAS  Google Scholar 

  83. Salmoria GV, Leite JL, Vieira LF, Pires ATN, Roesler CRM (2012) Mechanical properties of PA6_PA12 blend specimens prepared by selective laser sintering. Polym Test 31:411–416. https://doi.org/10.1016/jpolymertesting.2011.12.006

    Article  CAS  Google Scholar 

  84. Levchenko V, Mamunya Y, Boiteux G, Lebovka M, Alcouffe P, Seytre G et al (2011) (2011) Influence of organo-clay on electrical and mechanical properties of PP/MWCNT/OC nanocomposites. Eur Polym J 47:1351–1360. https://doi.org/10.1016/j.eurpolymj.2011.03.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Petroleum Technology Development Fund (PTDF), Nigeria, is acknowledged for providing the doctoral grant (Grant Number: 18GFC/PHD/065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olawale Monsur Sanusi, Dimitrios N. Bikiaris or Nourredine Aït Hocine.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanusi, O.M., Benelfellah, A., Papadopoulos, L. et al. Properties of poly(lactic acid)/montmorillonite/carbon nanotubes nanocomposites: determination of percolation threshold. J Mater Sci 56, 16887–16901 (2021). https://doi.org/10.1007/s10853-021-06378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06378-z

Navigation