Skip to main content
Log in

Bidirectional Selection for Novel Pheromone Blend Ratios in the Almond Moth, Cadra cautella

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The sex pheromone of the almond moth, Cadra cautella, is a blend of (Z,E)-9,12-tetradecadienyl acetate (Z9,E12–14:Ac, the major component capable of inducing attraction alone) and (Z)-9-tetradecenyl acetate (Z9–14:Ac, the minor component, which is unattractive alone but augments attraction of the major component). In this study, the ratio of the two components responded to artificial directional selection in five of six selected lines, whereas no change was observed in the three control lines. The mean ratio (±SE) of Z9,E12–14:Ac to Z9–14:Ac went from 13.72 ± 1.02:1 to 20.13 ± 0.68:1 in high line 1, an increase of 47%. In the second high-selected line, the mean ratio (±SE) increased from 9.87 ± 0.54:1 to 15.89 ± 0.85:1, an increase of 61%. In low line 1, the mean ratio (±SE) in the parental generation was 10.74 ± 0.78:1 and 7.35 ± 0.41:1 in the last selected generation, a decrease of 32%. The response to selection was greater in low line 2, as the mean ratio (±SE) decreased from 10.11 ± 0.66:1 to 5.65 ± 0.55:1 in the last generation, a decrease of 44%. In low line 3, the mean ratio (±SE) in the parental generation was 13.63 ± 0.82:1 and 6.47 ± 0.26:1 in the last generation, a decrease of 53%. The response to selection was approximately symmetrical with a mean increase of 54% and a mean decrease of 43%. The increases in ratio observed in the high lines were caused by an increase in the titer of the Z9,E12–14:Ac component with no concurrent change in the titer of the component Z9–14:Ac. Among the low selected lines, the titers of both components increased; however, there was a greater relative increase in the titer of the component Z9–14:Ac. The absolute and relative titers of the sex pheromone components had decreased significantly in the F10 generation in some of the selected lines, five generations after the discontinuation of selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison, J. D., and Cardé, R. T. 2006. Heritable variation in the sex pheromone of the almond moth, Cadra cautella. J. Chem Ecol 32:621–641.

    Article  PubMed  CAS  Google Scholar 

  • Allison, J. D. and Cardé, R. T. 2007. Male pheromone blend preference function measured in choice and no-choice wind-tunnel trials with Cadra cautella. Anim. Behav. (in press). DOI 10.1016/j.anbehav.2007.04.033.

  • Andersson, M. 1994. Sexual selection. Princeton University Press, Princeton.

    Google Scholar 

  • Arn, H. 2001. The pherolist. Available at http://www.pherolist.slu.se/index.html.

  • Barton, N. H., and Turelli, M. 1989. Evolutionary quantitative genetics—how little do we know. Annu. Rev. Genet. 23:337–370.

    PubMed  CAS  Google Scholar 

  • Basolo, A. L. 1996. The phylogenetic distribution of a female preference. Syst. Biol. 45:290–307.

    Article  Google Scholar 

  • Basolo, A. L. 1998. Evolutionary change in a receiver bias: a comparison of female preference functions. Proc. R. Soc. Lond. B 265:2223–2228.

    Article  CAS  Google Scholar 

  • Brady, U. E., Tumlinson, J. H., Brownlee, R. G., and Silverstein, R. M. 1971. Sex stimulant and attractant in the Indian meal moth and in the almond moth. Science 171:802–804.

    Article  PubMed  CAS  Google Scholar 

  • Butlin, R. K., and Ritchie, M. G. 1989. Genetic coupling in mate recognition systems: what is the evidence? Biol. J. Linn. Soc. 37:237–246.

    Article  Google Scholar 

  • Byers, J. A. 2002. Internet programs for drawing moth pheromone analogs and searching literature database. J. Chem. Ecol. 28:807–817.

    Article  PubMed  CAS  Google Scholar 

  • Byers, J. A. 2005. Chemical constraints on the evolution of olfactory communication channels of moths. J. Theor. Biol. 235:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Byers, J. A. 2006. Pheromone component patterns of moth evolution revealed by computer analysis of the Pherolist. J. Anim. Ecol. 75:399–407.

    Article  Google Scholar 

  • Cardé, R. T. 2007. Using pheromones to disrupt mating of moth pests, Perspectives in Ecological Theory and Integrated Pest Management. pp. 122–169, in M. Kogan, and P. Jepson (eds.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Cardé, R. T., and Haynes, K. F. 2004. Structure of the pheromone communication channel in moths, Advances in Insect Chemical Ecology. pp. 283–332, in R. T. Cardé, and J. G. Millar (eds.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Cardé, R. T., and Minks, A. K. 1995. Control of moth pests by mating disruption: Successes and constraints. Annu. Rev. Entomol. 40:559–585.

    Article  Google Scholar 

  • Cardé, R. T., Cardé, A. M., Hill, A. S., and Roelofs, W. L. 1977. Sex pheromone specificity as a reproductive isolating mechanism among sibling species Archips argyrospilus and A. mortuanus and other sympatric tortricine moths (Lepidoptera: Tortricidae). J. Chem. Ecol. 3:71–84.

    Article  Google Scholar 

  • Collins, R. D., and Cardé, R. T. 1989. Selection for altered pheromone-component ratios in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Insect Behav. 2:609–621.

    Article  Google Scholar 

  • Collins, R. D., Rosenblum, S. L., and Cardé, R. T. 1990. Selection for increased pheromone-component titre in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Physiol. Entomol. 15:141–147.

    Google Scholar 

  • Darwin, C. 1871. The Descent of Man and Selection in Relation to Sex. Murray, London.

    Google Scholar 

  • Endler, J. A. 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139:S125–S153.

    Article  Google Scholar 

  • Falconer, D. S., and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th edn.Longman, New York.

    Google Scholar 

  • Groot, A. T., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Natl. Acad. Sci. U S A 103:5858–5863.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, J. D., Bradley, J. D., and Carter, D. J. 1987. Lepidoptera, pp. 1–22, in C. R. Betts (ed.). CIE Guides to Insects of Importance to ManCAB International, Oxford.

    Google Scholar 

  • Klun, J. A., Plimmer, J. R., Bierl-leonhardt, B. A., Sparks, A. N., and Chapman, O. L. 1979. Trace chemicals – Essence of sexual communication-systems in Heliothis species. Science 204:1328–1330.

    Article  PubMed  CAS  Google Scholar 

  • Linn, C. E. Jr., and Roelofs, W. L. 1995. Pheromone communication in moths and its role in the speciation process, Speciation and the Recognition Concept. pp. 263–300, in D. M. Lambert, and H. G. Spencer (eds.). John Hopkins University Press, Baltimore.

    Google Scholar 

  • Löfstedt, C., and Kozlov, M. 1996. A phylogenetic analysis of pheromone communication in primitive moths, Insect Pheromone Research: New Directions. pp. 473–489, in R. T. Cardé, and A. K. Minks (eds.). Chapman and Hall, New York.

    Google Scholar 

  • Löfstedt, C., Herrebout, W. M., and Menken, S. B. J. 1991. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2:20–28.

    Article  Google Scholar 

  • McElfresh, J. S., and Millar, J. G. 2001. Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 82:3505–3518.

    Google Scholar 

  • Mochizuki, F., Fukomoto, T., Noguchi, H., Sugie, H., Morimoto, T., and Ohtani, K. 2002. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Applied Entomology and Zoology 37:299–304.

    Article  CAS  Google Scholar 

  • Raina, A. K., Klun, J. A., and Stadelbacher, E. A. 1986. Diel periodicity and effect of age and mating on female sex pheromone titer in Heliothis zea (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 79:128–131.

    CAS  Google Scholar 

  • Raulston, J. R., Snow, J. W., Graham, H. M., and Lingren, P. D. 1975. Tobacco budworm—effect of prior mating and sperm content on mating-behavior of females. Ann. Entomol. Soc. Am. 68:701–704.

    Google Scholar 

  • Read, J. S., and Haines, C. P. 1979. Secondary pheromone components and synergism in stored-products phycitinae. J. Chem. Ecol. 5:251–257.

    Article  CAS  Google Scholar 

  • Ritchie, M. G. 1996. The shape of female mating preferences. Proc. Natl. Acad. Sci. U S A 93:14628–14631.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, M. G., Saarikettu, M., and Hoikkala, A. 2005. Variation, but no covariance, in female preference functions and male song in a natural population of Drosophila montana. Anim. Behav. 70:849–854.

    Article  Google Scholar 

  • Roelofs, W. L., and Brown, R. L. 1982. Pheromones and the evolutionary relationships of Tortricidae. Annu. Rev. Ecol. Syst. 13:395–422..

    Article  CAS  Google Scholar 

  • Roelofs, W. L., and Comeau, A. 1969. Sex pheromone specificity: taxonomic and evolutionary aspects in Lepidoptera. Science 165:398–400.

    Article  PubMed  CAS  Google Scholar 

  • Roff, D. A. 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.

    Google Scholar 

  • Shorey, H. H. 1970. Sex pheromones of the Lepidoptera, Control of Insect Behavior by Natural Products. pp. 249–284, in D. L. Wood, R. M. Silverstein, and M. Nakajima (eds.). Academic, New York.

    Google Scholar 

  • Sreng, I., Glover, T., and Roelofs, W. 1989. Canalization of the redbanded leafroller moth sex pheromone blend. Arch. Insect Biochem. Physiol. 10:73–82.

    Article  CAS  Google Scholar 

  • Steel, R. G. D., and Torrie, J. H. 1980. Principles and Procedures of Statistics. McGraw-Hill, New York.

    Google Scholar 

  • Svensson, G. P., Ryne, C., and Löfstedt, C. 2002. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella. J. Chem. Ecol. 28:1447–1461.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J. D., Charlton, R. E., Cardé, R. T., and Yin, C. M. 1992. Diel periodicity and influence of age and mating on sex-pheromone titer in gypsy-moth Lymantria dispar (L). J. Chem. Ecol. 18:749–760.

    Article  CAS  Google Scholar 

  • Tumlinson, J. H., Yonce, C. E., Doolittle, R. E., Heath, R. R., Gentry, C. R., and Mitchell, E. R. 1974. Sex pheromones and reproductive isolation of the lesser peachtree borer and the peachtree borer. Science 185:614–616.

    Article  PubMed  CAS  Google Scholar 

  • Webster, R. P., and Cardé, R. T. 1984. The effects of mating, exogenous juvenile- hormone and a juvenile-hormone analog on pheromone titer, calling and oviposition in the omnivorous leafroller moth (Platynota stultana). J. Insect Physiol. 30:113–118.

    Article  CAS  Google Scholar 

  • White, C. S., Lambert, D. M., and Foster, S. P. 1995. Chemical signals and the recognition concept, Speciation and the Recognition Concept. pp. 301–326, in D. M. Lambert, and H. G. Spencer (eds.). John Hopkins University Press, Baltimore.

    Google Scholar 

  • Wilson, E. O., and Bossert, W. H. 1963. Chemical communication among animals. Recent Prog. Hormone Res. 19:673–716.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge T. Berhane, K. Buhrmeister, and S. Roufian for reliable and invaluable technical assistance rearing insect colonies; Drs J. D. Hare, K. A. Justus, J. G. Millar, R. A. Redak, and D. A. Roff for helpful the comments and discussions, and NSERC Canada and the University of California, Riverside for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Allison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allison, J.D., Cardé, R.T. Bidirectional Selection for Novel Pheromone Blend Ratios in the Almond Moth, Cadra cautella . J Chem Ecol 33, 2293–2307 (2007). https://doi.org/10.1007/s10886-007-9386-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9386-y

Keywords

Navigation