Skip to main content
Log in

Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Many previous investigations have consistently reported that caloric restriction (40%), which increases maximum longevity, decreases mitochondrial reactive species (ROS) generation and oxidative damage to mitochondrial DNA (mtDNA) in laboratory rodents. These decreases take place in rat liver after only seven weeks of caloric restriction. Moreover, it has been found that seven weeks of 40% protein restriction, independently of caloric restriction, also decrease these two parameters, whereas they are not changed after seven weeks of 40% lipid restriction. This is interesting since it is known that protein restriction can extend longevity in rodents, whereas lipid restriction does not have such effect. However, before concluding that the ameliorating effects of caloric restriction on mitochondrial oxidative stress are due to restriction in protein intake, studies on the third energetic component of the diet, carbohydrates, are needed. In the present study, using semipurified diets, the carbohydrate ingestion of male Wistar rats was decreased by 40% below controls without changing the level of intake of the other dietary components. After seven weeks of treatment the liver mitochondria of the carbohydrate restricted animals did not show changes in the rate of mitochondrial ROS production, mitochondrial oxygen consumption or percent free radical leak with any substrate (complex I- or complex II-linked) studied. In agreement with this, the levels of oxidative damage in hepatic mtDNA and nuclear DNA were not modified in carbohydrate restricted animals. Oxidative damage in mtDNA was one order of magnitude higher than that in nuclear DNA in both dietary groups. These results, together with previous ones, discard lipids and carbohydrates, and indicate that the lowered ingestion of dietary proteins is responsible for the decrease in mitochondrial ROS production and oxidative damage in mtDNA that occurs during caloric restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

8-oxodG::

8-oxo-7,8-dihydro-2’-deoxyguanosine

CR::

caloric restriction

mtDNA::

mitochondrial DNA

nDNA::

nuclear DNA

ROS::

reactive oxygen species

References

  1. 1 Archer VE (2003) Med Hypoteses 60:924–929

    Article  CAS  Google Scholar 

  2. 2 Asunción JG, Millan A, Pla R, Bruseghini I, Esteras A, Pallardo FV, Sastre J, Viña J (1996) FASEB J 10:333–338

    Google Scholar 

  3. 3 Barger JL, Walford RL, Weindruch R (2003) Exp Gerontol 38:1343–1351

    Article  Google Scholar 

  4. 4 Barja G (2002) J Bioenerg Biomembr 34:227–233

    Article  CAS  Google Scholar 

  5. 5 Barja G (2004a) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  Google Scholar 

  6. 6 Barja G (2004b) Biol Rev 79:235–251

    Article  Google Scholar 

  7. 7 Barzilai N, Gabriely I (2001) J Nutr 131:903S–906S

    CAS  Google Scholar 

  8. 8 Beckman KB, Ames BN (1998) Physiol Rev 78:547–581

    CAS  Google Scholar 

  9. 9 Dalderup LM, Visser W (1969) Nature 222:1050–1052

    Article  CAS  Google Scholar 

  10. 10 Doi SQ, Rasaiah S, Tack I, Mysore J, Kopchick JJ, Moore J, Hirszel P, Striker LJ, Striker GE (2001) Am J Nephrol 21:331–339

    Article  CAS  Google Scholar 

  11. 11 Gredilla R, Barja G, López-Torres M (2001a) J Bioenerg Biomembr 33:279–287

    Article  CAS  Google Scholar 

  12. 12 Gredilla R, Sanz A, López-Torres ML, Barja G (2001b) FASEB J. 15, 1589–1591

    CAS  Google Scholar 

  13. 13 Gredilla G, Barja G (2005) The role of oxidative stress in relation to caloric restriction and longevity. Endocrinol 146:3713–3717

    Article  CAS  Google Scholar 

  14. 14 Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988) J Gerontol 43:B13–B21

    CAS  Google Scholar 

  15. 15 Khorakova M, Deil Z, Khausman D, Matsek K (1990) Fiziol Zh 36:16–21

    CAS  Google Scholar 

  16. 16 Kubo C, Johnson BC, Gajjar A, Good RA (1987) J Nutr 117:1129–1135

    CAS  Google Scholar 

  17. 17 Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla T (2005) Science 5:71–79

    Google Scholar 

  18. 18 Latorre A, Moya A, Ayala A (1986) PNAS USA 83:8649–8653

    Article  CAS  Google Scholar 

  19. 19 Loft S, Poulsen HE (1999) Methods Enzymol 300:166–184

    Article  CAS  Google Scholar 

  20. 20 López-Torres M, Gredilla R, Sanz A, Barja G (2002) Free Rad Biol Med 32:882–889

    Article  Google Scholar 

  21. 21 Maeda H, Gleiser CA, Masoro EJ, Murata I, maman CA, Yu BP (1985) J Gerontol 40:671–688

    CAS  Google Scholar 

  22. 22 Mair W, Piper MD, Partridge L (2005) PloS Biol 3:1305–1311

    Article  CAS  Google Scholar 

  23. 23 Masoro EJ (1990) Proc Soc Exp Biol Med 193:31–34

    CAS  Google Scholar 

  24. 24 Masoro EJ (2000) Caloric restriction and aging: an update. Exper Gerontol 35:299–305

    Article  CAS  Google Scholar 

  25. 25 Mlekusch W, Lamprecht M, Ottl, K, Tillian M, Reibnegger G (1996) Mech Ageing Dev 92:43–51

    Article  CAS  Google Scholar 

  26. 26 Murtagh-Mark CM, Reiser KM, Harris R Jr, McDonald RB (1995) J Gerontol 50A:B148–B154

    CAS  Google Scholar 

  27. 27 Muurling M, Jong MC, Mensink RP, Hornstra G, Dahlmans VEH, Hanno P, Voshol PH, Havekes LM (2002) Metabolism 51:695–701

    Article  CAS  Google Scholar 

  28. 28 Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) J Nutr 123:269–274

    CAS  Google Scholar 

  29. 29 Pamplona R, Barja G (2006) Biochim Biophys Acta Bioenerg (In press)

  30. 30 Piper MD, Mair W, Partridge L (2005) J Gerontol A 60:549–555

    Google Scholar 

  31. 31 Ramsey JJ, Hagopian K, Kenny TM, Koomson EK, Bevilacqua L, Weindruch R, Harper ME (2004) Am J Physiol 286:E31–E40

    CAS  Google Scholar 

  32. 32 Richardson A, Liu F, Adamo ML, Van Remmen H, Nelson JF (2004) Best Pract Res Clin Endocrinol Metab 18:393–406

    Article  CAS  Google Scholar 

  33. 33 Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) FASEB J 8:1302–1307

    CAS  Google Scholar 

  34. 34 Rodrigues MAM, Sanchez-Negrette M, Mantovani MS, Santana LS, Angeleli AYO, Montenegro MR, de Camargo JLV (1991) Food Chem Toxicol 29:757–764

    Article  CAS  Google Scholar 

  35. 35 Ross MH (1976) In: Winick M (ed) Nutrition and Aging. Wiley, New York, pp 43–57

    Google Scholar 

  36. 36 Sanz A, Caro P, Barja G (2004) J Bioenerg Biomembr 36:545–552

    Article  CAS  Google Scholar 

  37. 37 Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G (2005a) J Bioenerg Biomembr 37:83–90

    Article  CAS  Google Scholar 

  38. 38 Sanz A, Gredilla R, Pamplona R, Portero-Otín M, Vara E, Tresguerres JAF., Barja G (2005b) Biogerontol 6:15–26

    Article  CAS  Google Scholar 

  39. 39 Sanz A, Caro P, Gómez J, Barja G (2006a) Ann NY Acad Sci (In press)

  40. 40 Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006b) FASEB J (In press)

  41. 41 Shimokawa I, Higami Y, Yu BP, Masoro EJ, Ikeda T (1996) Aging Clin Exp Res 8:254–262

    CAS  Google Scholar 

  42. 42 Yamaki K, Ide T, Takano-Ishikawa Y, Shinohara K (2005) Biosci Biotechnol Biochem 69:13–18

    Article  CAS  Google Scholar 

  43. 43 Youngman LD, Park JYK, Ames BN (1992) PNAS USA 89:9112–9116

    Article  CAS  Google Scholar 

  44. 44 Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Exp Gerontol 38:47–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, A., Gómez, J., Caro, P. et al. Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38, 327–333 (2006). https://doi.org/10.1007/s10863-006-9051-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9051-0

Keywords

Navigation