Skip to main content
Log in

Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue mimicking phantoms have been widely reported to be an important tool for development, optimisation and performance testing of ultrasound-based diagnostic techniques. In particular, modern applications of tissue mimicking phantoms often include characterisation of the nonlinear behaviour of experimental ultrasound contrast agents. In such cases, the tissue-mimicking materials should be chosen not only based on the values of their density, speed of sound and attenuation coefficient, but also considering their effect on the appearance of “native harmonics” due to nonlinear distortion of ultrasound signal during propagation. In a previous paper it was demonstrated that a cellulose-based hydrogel is suitable to simulate nonlinear acoustical behaviour of liver tissue for thicknesses up to 8 cm. In this paper we present the experimental characterisation of the nonlinear acoustical behaviour of a different polyethylene glycol diacrylate (PEGDA)-based hydrogel, in order to assess whether and how it can improve the performances and overcome some limitations of the cellulose-based hydrogel as liver tissue-mimicking material. Samples of pig liver tissue, cellulose-based hydrogel and PEGDA-based hydrogel were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values. Second harmonic and first harmonic amplitudes were extracted from the spectra of received signals and their difference was then used to compare sample behaviours. Obtained results show how a new more accurate and combined experimental model of linear and nonlinear acoustical behaviour of liver tissue is feasible. In fact, a further confirmation of the cellulose-based hydrogel effectiveness to precisely simulate the liver tissue for penetration depths up to 8 cm was provided, and it was also shown that the employment of the PEGDA-based hydrogel can extend the range of useful tissue-mimicking material thicknesses up to 11 cm, moreover allowing a considerable improvement of the time stability and behaviour reliability of the corresponding manufactured phantoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.W. Droste, Eur. Neurol. 59(Suppl. 1), 2 (2008). doi:10.1159/000114454

    Article  PubMed  MathSciNet  Google Scholar 

  2. D.J. Rakhit, H. Becher, M. Monaghan, P. Nihoyannopoulis, R. Senior, Eur. J. Echocardiogr. 8, S24 (2007). doi:10.1016/j.euje.2007.03.005

    Article  PubMed  Google Scholar 

  3. R. Lencioni, C. Della Pina, L. Crocetti, E. Bozzi, D. Cioni, Eur. Radiol. 17(Suppl. 6), F73 (2007)

    PubMed  Google Scholar 

  4. F. Conversano, S. Casciaro, in New Tchnology Frontiers in Minimally Invasive Therapies, ed. by S. Casciaro, B. Gersak (Lupiensis Biomedical Publications, Lecce, Italy, 2007), p. 161

    Google Scholar 

  5. S. Casciaro, F. Conversano, in Minimally Invasive Technologies and Nanosystems for Diagnosis and Therapies, ed. by S. Casciaro, E. Samset (Lupiensis Biomedical Publications, Lecce, Italy, 2008), p. 113

    Google Scholar 

  6. S. Casciaro, R. Palmizio Errico, F. Conversano, C. Demitri, A. Distante, Invest. Radiol. 42, 95 (2007). doi:10.1097/01.rli.0000251576.68097.d1

    Article  PubMed  CAS  Google Scholar 

  7. K. Zell, J.I. Sperl, M.W. Vogel, R. Niessner, C. Haisch, Phys. Med. Biol. 52, N475 (2007). doi:10.1088/0031-9155/52/20/N02

    Article  PubMed  ADS  CAS  Google Scholar 

  8. C. Demitri, A. Sannino, F. Conversano, S. Casciaro, A. Distante, A. Maffezzoli, J. Biomed. Mater. Res. Part B. Published online June 5, (2008)

  9. S. Casciaro, C. Demitri, F. Conversano, E. Casciaro, A. Distante, J. Mater. Sci.: Mater. Med. 19, 899 (2008). doi:10.1007/s10856-007-3007-8

    Article  CAS  Google Scholar 

  10. B.S. John, D. Rowland, L. Ratnam, M. Walkden, S. Nayak, U. Patel, K. Anson, D. Nassiri, Ultrasound Med. Biol. Published online May 14, (2008)

  11. R.S. Singh, M.O. Culjat, W.S. Grundfest, E.R. Brown, S.N. White, J. Acoust. Soc. Am. 123, EL39 (2008). doi:10.1121/1.2884083

    Article  PubMed  CAS  Google Scholar 

  12. H.-L. Liu, Y.-Y. Chen, W.-S. Chen, T.-C. Shih, J.-S. Chen, W.-L. Lin, Ultrasound Med. Biol. 32, 1411 (2006). doi:10.1016/j.ultrasmedbio.2006.05.008

    Article  PubMed  Google Scholar 

  13. C.M. Moran, T. Anderson, S.D. Pye, V. Sboros, W.N. Mcdicken, Ultrasound Med. Biol. 26, 629 (2000). doi:10.1016/S0301-5629(00)00148-4

    Article  PubMed  CAS  Google Scholar 

  14. C.J.P.M. Teirlinck, R.A. Bezemer, C. Kollmann, J. Lubbers, P.R. Hoskins, P. Fish, K.-E. Fredfeldt, U.G. Schaarschmidt, Ultrasonics 36, 653 (1998). doi:10.1016/S0041-624X(97)00150-9

    Article  PubMed  CAS  Google Scholar 

  15. S. Manohar, A. Kharine, J.C.G. Van Hespen, W. Steenbergen, T.G. Van Leeuwen, J. Biomed. Opt. 9, 1172 (2004). doi:10.1117/1.1803548

    Article  PubMed  ADS  Google Scholar 

  16. A. Kharine, S. Manohar, R. Seeton, G.M. Kolkman Roy, A. Bolt Rene, W. Steenbergen, F.M. De Mul Frits, Phys. Med. Biol. 48, 357 (2003). doi:10.1088/0031-9155/48/3/306

    Article  PubMed  Google Scholar 

  17. K. Takegami, Y. Kaneko, T. Watanabe, T. Maruyama, Y. Matsumoto, H. Nagawa, Ultrasound Med. Biol. 30, 1419 (2004). doi:10.1016/j.ultrasmedbio.2004.07.016

    Article  PubMed  Google Scholar 

  18. C. Lafon, V. Zderic, M.L. Noble, J.C. Yuen, P.J. Kaczkowski, O.A. Sapozhnikov, F. Chavrier, L.A. Crum, S. Vaezy, Ultrasound Med. Biol. 31, 1383 (2005). doi:10.1016/j.ultrasmedbio.2005.06.004

    Article  PubMed  Google Scholar 

  19. S. Howard, J. Yuen, P. Wegner, C. Zanelli, IEEE Ultrasonics Symposium, vol 2 p. 1270 (2003)

  20. M.M. Doyley, J.C. Bamber, F. Fuechsel, N.L. Bush, Ultrasound Med. Biol 27, 1347 (2001). doi:10.1016/S0301-5629(01)00429-X

    Article  PubMed  CAS  Google Scholar 

  21. K.M. Quan, G.B. Christison, H.A. Mackenzie, P. Hodgson, Phys. Med. Biol. 38, 1911 (1993). doi:10.1088/0031-9155/38/12/014

    Article  PubMed  CAS  Google Scholar 

  22. E.L. Madsen, G.R. Frank, F. Dong, Ultrasound Med. Biol. 24, 535 (1998). doi:10.1016/S0301-5629(98)00013-1

    Article  PubMed  CAS  Google Scholar 

  23. K. Matre, A.B. Ahmed, H. Gregersen, A. Heimdal, T. Hausken, S. Odegaard, O.H. Gilja, Ultrasound Med. Biol. 29, 1725 (2003). doi:10.1016/j.ultrasmedbio.2003.08.006

    Article  PubMed  Google Scholar 

  24. N. Maikusa, T. Fukami, T. Yuasa, Y. Tamura, T. Akatsuka, J. Acoust. Soc. Am. 122, 672 (2007). doi:10.1121/1.2743160

    Article  PubMed  ADS  Google Scholar 

  25. F. Forsberg, W.T. Shi, M.K. Knauer, A.L. Hall, C. Vecchio, R. Bernardi, Ultrason. Imaging 27, 65 (2005)

    PubMed  Google Scholar 

  26. M. Bazzocchi, Ecografia, 2nd edn. (Idelson Gnocchi, Naples, 2001)

    Google Scholar 

  27. S. Casciaro, C. Demitri, R. Palmizio Errico, F. Conversano, G. Palma, E. Casciaro, A. Distante, IEEE Ultrasonics Symposium, vol 3 p. 1668 (2005)

  28. L. Filipczynski, J. Wojcik, T. Kujawska, G. Lypacewicz, R. Tymkiewicz, B. Zienkiewicz, Ultrasound Med. Biol. 27, 251 (2001). doi:10.1016/S0301-5629(00)00329-X

    Article  PubMed  CAS  Google Scholar 

  29. W.R. Hedrick, D.L. Hykes, D.E. Starchman, Ultrasound Physics and Instrumentation, 3rd edn. (Mosby, St. Louis, 1995)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the MUR Project DM18640 (Rif. Min. DD MIUR 14.5.2005 n.602/Ric/2005), granted by the Italian Ministry of Research, and the ARIS*ER Project (Marie Curie Research Training Network MRTN-CT-2004-512400) granted by EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Casciaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casciaro, S., Conversano, F., Musio, S. et al. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. J Mater Sci: Mater Med 20, 983–989 (2009). https://doi.org/10.1007/s10856-008-3644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3644-6

Keywords

Navigation