Skip to main content
Log in

Underdamped capillary wave caused by solutal Marangoni convection in immiscible liquids

  • HTC 2015
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using a Cahn–Hilliard–Navier–Stokes model with a capillary tensor to account for solutal Marangoni force, we observe an interfacial wave at the interface of two immiscible liquids. A Fourier analysis shows that the interfacial wave is induced by oscillatory modes of solutal Marangoni convection. A critical Marangoni number is defined above which the oscillatory modes of solutal Marangoni convection are able to occur. This material property is a function of the wave number for different Cahn numbers and is determined from numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bush JWM (2004) Surface tension module. MIT OpenCourseWare, Cambridge

    Google Scholar 

  2. Wierschem A, Velarde MG, Linde H, Waldhelm W (1999) Interfacial wave motions due to Marangoni instability: II. Three-dimensional characteristics of surface waves in annular containers. J Colloid Interface Sci 212:365–383

    Article  Google Scholar 

  3. Linde H, Velarde MG, Waldhelm W, Wierschem A (2001) Interfacial wave motions due to Marangoni instability: III. Solitary waves and (periodic) wave trains and their collisions and reflections leading to dynamic network (cellular) patterns in large containers. J Colloid Interface Sci 236:214–224

    Article  Google Scholar 

  4. Wierschem A, Linde H, Velarde MG (2000) Internal waves excited by the Marangoni effect. Phys Rev E 62:6522

    Article  Google Scholar 

  5. Linde H, Velarde MG, Waldhelm W, Loeschcke K, Wierschem A (2005) On the various wave motions observed at a liquid interface due to Marangoni stresses and instability. Ind Eng Chem Res 44:1396–1412

    Article  Google Scholar 

  6. Michallet H, Barthelemy E (1998) Experimental study of interfacial solitary waves. J Fluid Mech 366:159–177

    Article  Google Scholar 

  7. Sternling CV, Scriven LE (1959) Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J 5:514–523

    Article  Google Scholar 

  8. Reichenbach J, Linde H (1981) Linear perturbation analysis of surface-tension-driven convection at a plane interface (Marangoni instability). J Colloid Interface Sci 84:433–443

    Article  Google Scholar 

  9. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  10. Wang F, Choudhury A, Selzer M, Mukherjee R, Nestler B (2012) Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system. Phys Rev E 86:066318

    Article  Google Scholar 

  11. Goldstein H, Poole C, Safko J (2001) Classical mechanics. Addison Wesley, New York

    Google Scholar 

  12. Wheeler AA, McFadden GB (1997) On the notion of a \(\xi \)-vector and a stress tensor for a general class of anisotropic diffuse interface models. Proc Roy Soc A 453:1611–1630

    Article  Google Scholar 

  13. Liu H, Zhang Y, Valocchi AJ (2012) Modeling and simulation of thermocapillary flows using lattice Boltzmann method. J Comput Phys 231:4433–4453

    Article  Google Scholar 

  14. Langer JS (1980) Instability and pattern formation in crystal growth. Rev Mod Phys 52:1–28

    Article  Google Scholar 

  15. Derby B, Favier JJ (1983) A criterion for the determination of monotectic structure. Acta Metall 31:1123–1130

    Article  Google Scholar 

  16. Egry I, Ratke L, Kolbe M, Chatain D, Curiotto S, Battezzati L, Johnson E, Pryds N (2010) Interfacial properties of immiscible Co–Cu alloys. J Mater Sci 45:1979–1985. doi:10.1007/s10853-009-3890-0

    Article  Google Scholar 

  17. Kaptay G (2008) A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems. Calphad 32:338–352

    Article  Google Scholar 

  18. Mendelev MI, Mishin Y (2009) Molecular dynamics study of self-diffusion in bcc Fe. Phys Rev B 80:144111

    Article  Google Scholar 

  19. Assael MJ et al (2010) Reference data for the density and viscosity of liquid copper and liquid tin. J Phys Chem Ref Data 39:033105

    Article  Google Scholar 

  20. Griebel M, Dornseifer T, Neunhoeffer T (1997) Numerical simulation in fluid dynamics: a practical introduction. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  21. Moin P (2010) Fundamentals of engineering numerical analysis. Cambridge University Press, New York

    Book  Google Scholar 

  22. Gibbs JW (1957) The collected works of J. Willard Gibbs. Yale University Press, New York

    Google Scholar 

  23. Chattoraj DK, Birdi KS (1984) Adsorption and the Gibbs surface excess. Plenum Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ben Said, M., Selzer, M. et al. Underdamped capillary wave caused by solutal Marangoni convection in immiscible liquids. J Mater Sci 51, 1820–1828 (2016). https://doi.org/10.1007/s10853-015-9600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9600-1

Keywords

Navigation