Skip to main content

Advertisement

Log in

High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to produce economically viable supercapacitor devices for electrical energy storage, low cost, and high throughput methods must be developed. We developed a microwave based synthesis for the formation of β-Ni(OH)2 for the formation of nickel oxide nanoplates. These nanoplates have shown excellent properties as pseudocapacitive devices with high-specific capacitance. Novel to this article is the use of a microwave reactor which enables a growth process of only 10 min in duration as compared to previous reports requiring a 24 h period. The resulting NiO nanoplates were fully characterized by electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy, UV–Vis spectroscopy, thermo gravimetric analysis, and surface area and porosity measurements. Nanoplates formed using the microwave reactor is similar to those formed by hydrothermal processes. NiO-single walled carbon nanotube composites were made without any binder and the specific capacitance was measured using charge discharge techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sherrill SA, Banerjee P, Rubloff GW, Lee SB (2011) PCCP Phys Chem Chem Phys 13(46):20714. doi:10.1039/c1cp22659b

    Article  CAS  Google Scholar 

  2. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41(2):797. doi:10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic Plenum Press, New York

    Google Scholar 

  4. Nam KW, Kim KB (2002) J Electrochem Soc 149(3):A346. doi:10.1149/1.1449951

    Article  CAS  Google Scholar 

  5. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109(43):20207. doi:10.1021/jp0543330

    Article  CAS  Google Scholar 

  6. Subramanian V, Zhu HW, Wei BQ (2006) J Power Sources 159(1):361. doi:10.1016/j.jpowsour.2006.04.012

    Article  CAS  Google Scholar 

  7. Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao XS (2010) J Phys Chem C 114(32):13608. doi:10.1021/jp105146c

    Article  CAS  Google Scholar 

  8. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) Adv Mater 23(6):791. doi:10.1002/adma.201003658

    Article  CAS  Google Scholar 

  9. Zhang Y, Gui Y, Wu X, Feng H, Zhang A, Wang L, Xia T (2009) Int J Hydrogen Energy 34(5):2467. doi:10.1016/j.ijhydene.2008.12.078

    Article  CAS  Google Scholar 

  10. Dallinger D, Kappe CO (2007) Chem Rev 107(6):2563. doi:10.1021/cr0509410

    Article  CAS  Google Scholar 

  11. Roberts BA, Strauss CR (2005) Acc Chem Res 38(8):653. doi:10.1021/ar040278m

    Article  CAS  Google Scholar 

  12. Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21(13):2825. doi:10.1021/cm9004486

    Article  CAS  Google Scholar 

  13. Glaspell G, Fuoco L, El-Shall MS (2005) J Phys Chem B 109(37):17350. doi:10.1021/jp0526849

    Article  CAS  Google Scholar 

  14. Glaspell G, Hassan EA, Fuoco L, Radwan NRE, El-Shall MS (2006) J Phys Chem B 110(43):21387. doi:10.1021/jp0651034

    Article  CAS  Google Scholar 

  15. Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS (2011) Langmuir 27(24):15146. doi:10.1021/la201698k

    Article  CAS  Google Scholar 

  16. Wang Y, Xing S, Zhang E, Wei J, Suo H, Zhao C, Zhao X (2012) J Mater Sci 47(5):2182. doi:10.1007/s10853-011-6021-7

    Article  CAS  Google Scholar 

  17. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9(5):1180. doi:10.1016/j.elecom.2007.01.014

    Article  CAS  Google Scholar 

  18. Meher SK, Justin P, Rao GR (2011) ACS Appl Mater Interfaces 3(6):2063. doi:10.1021/am200294k

    Article  CAS  Google Scholar 

  19. Parada C, Morán E (2006) Chem Mater 18(11):2719. doi:10.1021/cm0511365

    Article  CAS  Google Scholar 

  20. Zhu ZF, Zhang YL, Liu H, Wei N (2012) Superlattices Microstruct 51(2):232. doi:10.1016/j.spmi.2011.11.014

    Article  CAS  Google Scholar 

  21. Qi Y, Qi H, Li J, Lu C (2008) J Cryst Growth 310(18):4221. doi:10.1016/j.jcrysgro.2008.06.047

    Article  CAS  Google Scholar 

  22. Zhu ZH, Ping J, Huang XP, Hu JG, Chen QY, Ji XB, Banks CE (2012) J Mater Sci 47(1):503. doi:10.1007/s10853-011-5826-8

    Article  CAS  Google Scholar 

  23. Fievet F, Germi P, de Bergevin F, Figlarz M (1979) J Appl Crystallogr 12(4):387. doi:10.1107/S0021889879012747

    Article  CAS  Google Scholar 

  24. Farzaneh F, Mehraban Z, Norouzi F (2010) Environ Chem Lett 8(1):69. doi:10.1007/s10311-008-0193-7

    Article  CAS  Google Scholar 

  25. Johnston HL, Marshall AL (1940) J Am Chem Soc 62(6):1382. doi:10.1021/ja01863a015

    Article  CAS  Google Scholar 

  26. Ivanov E (2008) Prot Met 44(4):386. doi:10.1134/s0033173208040139

    Article  CAS  Google Scholar 

  27. Zhang XJ, Shi WH, Zhu JX, Kharistal DJ, Zhao WY, Lalia BS, Hng HH, Yan QY (2011) ACS Nano 5(3):2013. doi:10.1021/nn1030719

    Article  CAS  Google Scholar 

  28. Wang X, Han XD, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J Phys Chem C 116(23):12448. doi:10.1021/jp3028353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous support of the Nanoscale Science Ph.D. program at UNC Charlotte for facilities funding. We also acknowledge the ACS and the Project SEED endowment for supporting Colton Overson and the Charlotte Research Scholars program at UNC Charlotte for supporting Dylan Brokaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan C. Poler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behm, N., Brokaw, D., Overson, C. et al. High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48, 1711–1716 (2013). https://doi.org/10.1007/s10853-012-6929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6929-6

Keywords

Navigation