Skip to main content
Log in

Effect of ageing on the mechanical properties and the residual stress distribution of hybrid clay–glass fibre–polypropylene injection mouldings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of ageing on the mechanical properties and thermal stresses distribution of injection moulded, short glass fibre/clay/polypropylene composites were studied. Two different clays were studied—talc and sepiolite. The results obtained indicate that the incorporation of short glass fibre into clay/polypropylene composites improves the mechanical properties, independently of ageing treatment. Larger elastic modulus values were obtained for talc-filled samples, whereas higher strength values were obtained with the sepiolite-filled ones. The impact strength increased as a result of the incorporation of glass fibre into the sepiolite-filled composite, while a small decrease was detected for the talc-filled polypropylene sample. Sepiolite-filled compounds show higher mould shrinkage in the bar-axis direction than equivalent talc-filled grades. In contrast, the shrinkage obtained on annealing at various temperatures between 100 and 160 °C was generally greater for talc-filled compounds than for the sepiolite-filled compounds. The shrinkage behaviour in the transverse direction was more complex. The residual stress levels of clay-filled polypropylene compounds were generally lower than those reported in the literature concerning short glass fibre polypropylene compounds under similar conditions. Hybrid composites showed much higher stress levels than the corresponding clay-filled samples independently of ageing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yilmazer U (1992) Compos Sci Technol 44:119

    Article  CAS  Google Scholar 

  2. Fu SY, Lauke B (1998) Compos A 29A:575

    Article  CAS  Google Scholar 

  3. Fu SY, Xu G, Mai YW (2002) Compos B 33:291

    Article  Google Scholar 

  4. Hartikainen J, Hine P, Szabço JS, Lindner M, Harmia T, Duckett RA, Friedrich K (2005) Compos Sci Technol 65:257

    Article  CAS  Google Scholar 

  5. Faingold A, Narkis M, Siegman A (2008) J Macromol Sci B 47:485

    Article  CAS  Google Scholar 

  6. Acosta JL, Morales E, Ojeda MC, Linares A (1986) Angew Makromol Chem 138:103

    Article  CAS  Google Scholar 

  7. Morales E, White JR (1988) J Mater Sci 23:3612. doi:https://doi.org/10.1007/BF00540503

    Article  CAS  Google Scholar 

  8. Morales E, White JR (1988) J Mater Sci 23:4525. doi:https://doi.org/10.1007/BF00551955

    Article  CAS  Google Scholar 

  9. Hindle CS, White JR, Dawson S, Greenwood WJ, Thomas K (1981) SPE Tech Paper 27:783

    Google Scholar 

  10. So P, Broutman LJ (1976) Polym Eng Sci 16:785

    Article  CAS  Google Scholar 

  11. White JR (1984) Polym Testing 4:165–191

    Article  CAS  Google Scholar 

  12. Kamal MR, Lai-Fook RA, Hernandez-Aguilar JR (2002) Polym Eng Sci 42:1098

    Article  CAS  Google Scholar 

  13. Treuting RG, Read WT (1951) J Appl Phys 22:130

    Article  Google Scholar 

  14. Bendek E, Lira I, Francois M, Vial C (2006) Int J Mech Sci 48:1429

    Article  Google Scholar 

  15. Wang T-H, Young W-B (2005) Eur Polym J 41:2511

    Article  CAS  Google Scholar 

  16. Sen A, Bhattacharya M (2000) Polymer 41:9177

    Article  CAS  Google Scholar 

  17. Wilkinson SB, White JR (1998) J Mater Sci 33:3101. doi:https://doi.org/10.1023/A:1004391722074

    Article  CAS  Google Scholar 

  18. Qayyum MM, White JR (1993) Polym Degrad Stab 39:199

    Article  CAS  Google Scholar 

  19. Hindle CS, White JR, Dawson D, Thomas K (1992) Polym Eng Sci 32:157

    Article  CAS  Google Scholar 

  20. O’Donnell B, White JR (1993) J Appl Polym Sci 47:189

    Article  Google Scholar 

  21. O’Donnell B, White JR (1994) Plast Rubb Compos Proc Appl 22:69

    Google Scholar 

  22. Wilkinson SB, White JR (1997) Plast Rubb Compos Proc Appl 26:205

    CAS  Google Scholar 

  23. White JR (1985) J Mater Sci 20:2377. doi:https://doi.org/10.1007/BF00556067

    Article  CAS  Google Scholar 

  24. Paterson MWA, White JR (1989) J Mater Sci 24:3521. doi:https://doi.org/10.1007/BF02385734

    Article  CAS  Google Scholar 

  25. Paterson MWA, White JR (1992) J Mater Sci 27:6229. doi:https://doi.org/10.1007/BF01133776

    Article  CAS  Google Scholar 

  26. Coxon LD, White JR (1980) Polym Eng Sci 20:230

    Article  CAS  Google Scholar 

  27. Brauner S, Preisinger A (1956) Mineralog Petrogr 6:120

    CAS  Google Scholar 

  28. Tartaglione G, Tabuani D, Camino G, Moisio M (2008) Compos Sci Technol 68:451

    Article  CAS  Google Scholar 

  29. Bilotti E, Fischer HR, Peijs T (2008) J Appl Polym Sci 107:1116

    Article  CAS  Google Scholar 

  30. Ma J, Bilotti E, Peijs T, Darr JA (2007) Eur Polym J 43:4931

    Article  CAS  Google Scholar 

  31. Acosta JL, Morales E, Ojeda MC, Linares A (1986) J Mater Sci 21:725. doi:https://doi.org/10.1007/BF01145547

    Article  CAS  Google Scholar 

  32. Bokobza L, Burr A, Garnaud G, Perrin MY, Pagnotta S (2004) Polym Int 53:1060

    Article  CAS  Google Scholar 

  33. Franchini E, Galy J, Gérard J-F (2009) J Coll Interf Sci 329:38

    Article  CAS  Google Scholar 

  34. Zheng Y, Zheng Y (2006) J Appl Polym Sci 99:2163

    Article  CAS  Google Scholar 

  35. Xie S, Zhang S, Wang F, Yang M, Séguéla R, Lefebvre J-M (2007) Compos Sci Technol 67:2334

    Article  CAS  Google Scholar 

  36. Chen H, Zheng M, Sun H, Jia Q (2007) Mat Sci Eng A 445–446:725

    Article  Google Scholar 

  37. Zhang F, Guo Z, Gao H, Li Y, Ren L, Shi L, Wang L (2005) Polym Bull 55:419

    Article  CAS  Google Scholar 

  38. Bokobza L, Chauvin J-P (2005) Polymer 46:4144

    Article  CAS  Google Scholar 

  39. Acosta JL, Ojeda MC, Morales E, Linares A (1986) J Appl Polym Sci 32:4119

    Article  CAS  Google Scholar 

  40. Acosta JL, Linares A, Ojeda MC (1985) Eur Polym J 21:821

    Article  CAS  Google Scholar 

  41. Morales E (1986) PhD thesis, Complutense University, Madrid

  42. Revilla-Diez R, Sánchez-Valdés S, López-Campos F, Medellin-Rodrigez FJ, López-Quintanilla ML (2007) Macromol Mater Eng 292:762

    Article  Google Scholar 

  43. Shelesh-Nezhad K, Taghizedeh A (2007) Polym Eng Sci 47:2125

    Article  Google Scholar 

  44. Parlevliet PP, Bersee HEN, Beukers A (2006) Compos A 37(11):1847

    Article  Google Scholar 

  45. Song YS (2007) E-Polymers 5:1

    Google Scholar 

  46. Thomas K, Dawson D, Grenwood WJ, White JR, Hindle CS, Thompson M (1982) In: Fifth international conference on deformation, yield and fracture of polymers, Cambridge, paper 37

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, E., White, J.R. Effect of ageing on the mechanical properties and the residual stress distribution of hybrid clay–glass fibre–polypropylene injection mouldings. J Mater Sci 44, 4734–4742 (2009). https://doi.org/10.1007/s10853-009-3733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3733-z

Keywords

Navigation