Skip to main content
Log in

Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of the addition of smectite clay fillers to a polylactide matrix on the physical properties of the nanocomposites thus created, studied during the degradation process. A small amount of nanofiller (3–10 mass %) was used, and the clay was additionally modified with organic ammonium salt for better compatibility with the polymer matrix. Crystallisation, glass transition and melting temperature of the nanocomposites were investigated, and the resulting thermal, structural and mechanical properties were compared to those of a neat polylactide. The degradation process of the materials was examined during immersion in distilled water at 80 °C for 60 days using differential scanning calorimetry (DSC), thermogravimetric analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Macroscopic changes were monitored and mechanical properties tested prior to degradation to evaluate the ability of the modified clay filler to reinforce the polymer and enhance elastic modulus, mechanical strength and Brinell hardness. The influence of the modified smectite filler on the thermal, mechanical and structural properties of the nanocomposites during degradation and its dependence on filler content were discussed and confirmed in the study. It was found that the addition of 3 mass% of the clay filler provides an increase of nearly 20 % in tensile strength, with improved stiffness. It was also found that the addition of organically modified clay to the polymer matrix significantly changes the hydrolytic degradation mechanisms of the polylactide, the crystallinity of the polymer and its degradation rate, depending on the amount of the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fomin VA, Guzeev VV. Biodegradable polymers, their present state and future prospects. Prog Rubber Plast Recyc Technol. 2001;17:186–204.

    CAS  Google Scholar 

  2. Sorrentino A, Gorrasi G, Vittoria V. Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol. 2007;18:84–95.

    Article  CAS  Google Scholar 

  3. Wu C-J, Gaharwar AK, Schexnailder PJ, Schmidt G. Development of biomedical polymer-silicate nanocomposites: a materials science perspective. Materials. 2010;3:2986–3005.

    Article  CAS  Google Scholar 

  4. Auras R, Lim L-T, Selke SEM, Tsuji H. Poly(lactic acid) synthesis, structures, properties, processing, and application. New Jersey: Wiley; 2010.

    Book  Google Scholar 

  5. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  6. Sharma SK, Nayak SK. Surface modified clay/polypropylene (PP) nanocomposites: effect on physic-mechanical, thermal and morphological properties. Polym Degrad Stab. 2009;94:132–8.

    Article  CAS  Google Scholar 

  7. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  8. Ganguly S, Dana K, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.

    Article  CAS  Google Scholar 

  9. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Comp Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  10. De Azeredo MCH. Nanocomposites for food packaging applications. Food Res Int. 2009;42:1240–53.

    Article  Google Scholar 

  11. Gao F. Clay/polymer composites: the story. Mater Today. 2004;7:50–5.

    Article  CAS  Google Scholar 

  12. Pluta M, Galeski A, Alexandra M, Paul MA, Bubois P. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci. 2002;86:1497–506.

    Article  CAS  Google Scholar 

  13. Choudalakis GA, Kalo H, Breu J, Gotsis AD. CO2 gas barrier properties in polymer nanocomposite coatings containing Li-hectorite clays. J Appl Polym Sci. 2014;131:40805.

    Article  Google Scholar 

  14. Fedullo N, Sorlier E, Sclavons M, Bailly C, Lefebvre JM, Devaux J. Polymer-based nanocomposite: overview, applications and perspectives. Prog Org Coat. 2007;58:87–95.

    Article  CAS  Google Scholar 

  15. Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY. Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination. 2008;233:201–9.

    Article  CAS  Google Scholar 

  16. Xu W, Raychowdhury S, Jiang DD, Retsos H, Giannelis EP. Dramatic improvements in toughness in poly(lactide-co-glycolide) nanocomposites. Small. 2008;4:662–9.

    Article  CAS  Google Scholar 

  17. Lu C, Mai Y. Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett. 2005;95:88303–7.

    Article  Google Scholar 

  18. Armentanoo I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci. 2013;38:1720–47.

    Article  Google Scholar 

  19. Kadi S, Djadoun S. Thermal behavior of poly (etyl methacrylate-co-acrylonitrile) nanocomposites prepared in the presence of an Algerian bentonite via solution intercalation and in situ polymerization. J Therm Anal Calorim. 2015;119:1113–22.

    Article  CAS  Google Scholar 

  20. Ray SS, Yamada K, Okamoto M, Ueda K. New polylactidd = e/layered silicate nanocomposite: nanoscale control over multiple properties. Macromol Rapid Commun. 2002;23:943–7.

    Article  CAS  Google Scholar 

  21. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.

    Article  CAS  Google Scholar 

  22. Bergaya F, Theng BKG, Legaly G. Handbook of clay science, development in clay science, vol. 1. Amsterdam: Elsevier Ltd; 2006.

    Google Scholar 

  23. Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B, Gajek M, Dudek P. Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polimer/clay nanocomposites. Mater Lett. 2015;146:73–6.

    Article  CAS  Google Scholar 

  24. Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater. 2007;19:1309–19.

    Article  CAS  Google Scholar 

  25. Kibbe HA. Handbook of pharmaceutical excipients. 3rd ed. Washington: American Pharmaceutical Association; 2000.

    Google Scholar 

  26. Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A. Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci. 2007;36:37–50.

    Article  CAS  Google Scholar 

  27. Martin O, Avérous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.

    Article  CAS  Google Scholar 

  28. Das K, Ray D, Banerjee I, Bandyopadhyay NR, Sengupta S, Mohanty AK, Misra M. Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. J Appl Polym Sci. 2010;118:143–51.

    Article  CAS  Google Scholar 

  29. Wu T-M, Wu C-Y. Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab. 2006;91:2198–204.

    Article  CAS  Google Scholar 

  30. Chapple S, Anandjiwala R, Ray SS. Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. J Therm Anal Calorim. 2013;113:703–12.

    Article  CAS  Google Scholar 

  31. Paul M-A, Delcourt C, Alexandre M, Degee P, Monteverde F, Dubois P. Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab. 2005;87:535–42.

    Article  CAS  Google Scholar 

  32. Zhou Q, Xanthos M. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab. 2008;93:1450–9.

    Article  CAS  Google Scholar 

  33. Araujo A, Botelho G, Oliveira M, Machado AV. Influence of clay organic modifier on the thermal stability of PLA based nanocomposites. Appl Clay Sci. 2014;88–89:144–50.

    Article  Google Scholar 

  34. Ndazi BS, Karlsson S. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. eXPR Polym Lett. 2011;5:119–31.

    Article  CAS  Google Scholar 

  35. Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L. Effect of sepiolite on the biodegradation of poly(lactic acid)and polycaprolactone. Polym Degrad Stab. 2010;95:2049–56.

    Article  CAS  Google Scholar 

  36. Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci. 2002;6:205–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank PhD Eng. Magdalena Ziąbka for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicja Rapacz-Kmita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapacz-Kmita, A., Gajek, M., Dudek, M. et al. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim 127, 389–398 (2017). https://doi.org/10.1007/s10973-016-5771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5771-5

Keywords

Navigation