Skip to main content
Log in

Abstract

The ability of cyclodextrins to form inclusion complexes with hydrophobic species in aqueous solution makes them well-suited to the development of molecular reactors, to be used as miniature reaction vessels in order to control the outcomes of chemical transformations at the molecular level. In this manner, reaction rates can be increased and products may be obtained that are different to those normally accessible from reactions in free solution. Examples used to illustrate these effects include: the application of cyclodextrins to control the regioselectivity of bromination of aromatic substrates with pyridinium dichlorobromate: the use of a metallocyclodextrin to increase the rate of hydrolysis of a phosphate triester by almost five orders of magnitude; the development of modified cyclodextrins to increase the rates and reverse the regioselectivity of nitrile oxide cycloadditions ; and the use of a cyclodextrin dimer to change the ratio of formation of indigoid dyes by a factor of more than 3500.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Easton and S.F. Lincoln: Modified Cyclodextrins.Scaffolds and Templates for Supramolecular Chemistry, Imperial College Press, London (1999).

    Google Scholar 

  2. R. Breslow and P. Campbell: J. Am. Chem. Soc. 91, 3085 (1969).

    Google Scholar 

  3. R. Breslow and P. Campbell: Bioorg. Chem. 1, 140 (1971).

    Google Scholar 

  4. R. Breslow, H. Kohn, and B. Siegel: Tetrahedron Lett. 1645 (1976).

  5. R. Chênevert and G. Ampleman: Can. J. Chem. 65, 307 (1987).

    Google Scholar 

  6. M. Komiyama and H. Hirai: J. Am. Chem. Soc. 106, 174 (1984).

    Google Scholar 

  7. P.G. Dumanski, C.J. Easton, S.F. Lincoln, and J.S. Simpson: Aust. J. Chem. 56, 1107 (2003).

    Google Scholar 

  8. R.L. VanEtten, J.F. Sebastian, G.A. Clowes, and M.L. Bender: J. Am. Chem. Soc. 89, 3242 (1967).

    Google Scholar 

  9. R.L. VanEtten, G.A. Clowes, J.F. Sebastian, and M.L. Bender: J. Am. Chem. Soc. 89, 3253 (1967).

    Google Scholar 

  10. R. Breslow and S.D. Dong: Chem. Rev. 98, 1997 (1998).

    Google Scholar 

  11. E. Rizzarelli and G. Vecchio: Coord. Chem. Rev. 188, 343 (1999).

    Google Scholar 

  12. L. Barr, C.J. Easton, K. Lee, S.F. Lincoln, and J.S. Simpson: Tetrahedron Lett. 43, 7797 (2002).

    Google Scholar 

  13. (a)D.C. Rideout and R. Breslow: J. Am. Chem. Soc. 102, 7816 (1980); (b) D.D. Sternbach and D.M. Rossana: J. Am. Chem. Soc. 104, 5853 (1982); (c) H.-J. Schneider and N.K. Sangwan: J. Chem. Soc., Chem. Commun. 1787 (1986); (d) H.-J. Schneider and N.K. Sangwan: Angew. Chem., Int. Ed. Engl. 26, 896 (1987); (e) N.K. Sangwan and H.-J. Schneider: J. Chem. Soc., Perkin Trans. 2, 1223 (1989); (f) D.L. Wernick, A. Yazbek, and J. Levy: J. Chem. Soc., Chem. Commun. 956 (1990); (g) I. Hunt and C.D. Johnson: J. Chem. Soc., Perkin Trans. 2, 1051 (1991).

  14. For examples, see (a) T. Tamaki and T. Kokubu: T. J. Incl. Phenom. 2, 815 (1984); (b) T. Tamaki, T. Kokubu, and K. Ichimura: Tetrahedron 43, 1485 (1987); (c) J.N. Moorthy, K. Venkatesan, and R.G. Weiss: J. Org. Chem. 57, 3292 (1992); (d) W. Herrmann, S. Wehrle, and G. Wenz: Chem. Commun. 1709 (1997); (e) T. Nozaki, M. Maeda, Y. Maeda, and H. Kitano: J. Chem. Soc., Perkin Trans. 2, 1217 (1997); (f) M. Maa, J.-J. Aaron, and C. Lion: J. Incl. Phenom. 30, 227 (1998).

  15. (a) A.G. Meyer, C.J. Easton, S.F. Lincoln, and G.W. Simpson: Chem. Commun. 1517 (1997); (b) A.G. Meyer, C.J. Easton, S.F. Lincoln, and G.W. Simpson: J. Org. Chem. 63, 9069 (1998).

  16. C.J. Easton, J.B. Harper, and S.F. Lincoln: New J. Chem. 22, 1163 (1998).

    Google Scholar 

  17. J.B. Harper, C.J. Easton, and S.F. Lincoln: Tetrahedron Lett. 44, 5815 (2003).

    Google Scholar 

  18. J. Yang and R. Breslow: Angew. Chem., Int. Ed. Engl. 39, 2692 (2000).

    Google Scholar 

  19. J. Yang, B. Gabriele, S. Belvedere, Y. Huang, and R. Breslow: J. Org. Chem. 67, 5057 (2002).

    Google Scholar 

  20. C.J. Easton, C.M.M. Hughes, G.P. Savage, and G.W. Simpson: Adv. Heterocycl. Chem. 60, 261 (1994).

    Google Scholar 

  21. C.A. Haskard, B.L. May, T. Kurucsev, S.F. Lincoln, and C.J. Easton: J. Chem. Soc., Faraday Trans. 93, 279 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barr, L., Dumanski, P.G., Easton, C.J. et al. Cyclodextrin Molecular Reactors. Journal of Inclusion Phenomena 50, 19–24 (2004). https://doi.org/10.1007/s10847-004-8833-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-004-8833-9

Navigation