Skip to main content
Log in

Deep level transient spectroscopy study of the effect of Mn and Bi doping on trap formation in ZnO

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Deep Level Transient Spectroscopy (DLTS) characterisation of sintered polycrystalline ZnO, and ZnO doped with Mn, and with Mn plus Bi, has been carried out to investigate the effect of these additions on the formation and activation of electron trap states in ZnO used for varistor applications. Samples were produced using a conventional solid state sintering technique, and sintered at 1100°C and 1200°C, quenching the Bi-free samples from the sintering temperature to preserve high temperature defect distribution and slow cooling the Bi-containing samples to develop varistor behaviour. The two well-known bulk ZnO traps, L1 (0.18 eV below the conduction band edge) and L2 (0.29 eV below the conduction band edge), were observed in both the undoped and doped samples. Detailed characterisation of the L1 and L2 traps indicated that they are due to point defects, since their energy was independent of the length of the fill pulse and the fill bias. The introduction of both 1% Mn and (1% Mn + 2% Bi) caused several additional electron traps, some of which have not been reported previously, to appear deeper in the band gap with energies depending on composition and firing cycle,. The DLTS peaks associated with these additional traps were very broad and had activation energies that varied with fill pulse length: characteristics that indicate they are associated with extended defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Matsuoka, Non-ohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys. 10, 736–746 (1971)

    Article  CAS  ADS  Google Scholar 

  2. D.R. Clark, Varistor ceramics. J. Amer. Ceram. Soc. 82, 485–502 (1999)

    Article  Google Scholar 

  3. G.E. Pike, C.H. Seager, The dc voltage dependence of semiconductor grain boundary resistance. J. Appl. Phys. 50, 3414–3422 (1979)

    Article  CAS  ADS  Google Scholar 

  4. G.E. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson, Electroluminescence in ZnO varistors: Evidence for hole contributions to the breakdown mechanism. J. Appl. Phys. 57(12), 5512–5518 (1985)

    Article  CAS  ADS  Google Scholar 

  5. T. Maeda, S. Meguro, M. Takata, Isothermal capacitance transient spectroscopy in ZnO varistor. Jpn. J. Appl. Phys. 28, L714–716 (1989)

    Article  CAS  ADS  Google Scholar 

  6. G.E. Pike, Electronic properties of ZnO varistors: A new model. Mater. Res. Soc. Symp. Proc. 5, 369–379 (1982)

    CAS  Google Scholar 

  7. R. Puyane, Application and product development in varistor technology. J. Mater. Process. Technol. 55, 268–277 (1995)

    Article  Google Scholar 

  8. J.P. Gambino, W.D. Kingery, G.E. Pike, H.R. Phillip, L.M. Levinson, Grain boundary electronic states in some simple ZnO varistors. J. Appl. Phys. 61(7), 2571–2574 (1987)

    Article  CAS  ADS  Google Scholar 

  9. T.K. Gupta, Application of ZnO varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  10. F. Greuter, G. Blatter, Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 5, 111–137 (1990)

    Article  CAS  ADS  Google Scholar 

  11. L.M. Levinson, H.R. Philipp, Zinc oxide varistors—a review. Bull. Am. Ceram. Soc. 65, 639–646 (1986)

    CAS  Google Scholar 

  12. H. Wang, Y.M. Chiang, Thermodynamic stability of intergranular amorphous films in bismuth doped ZnO. J. Am. Ceram. Soc. 81(1), 89–96 (1998)

    Article  CAS  MathSciNet  Google Scholar 

  13. R. Einzinger, Grain boundary phenomena in ZnO varistors In Grain boundaries in semiconductors. Mater. Res. Soc. Symp. Proc., ed. by H.J. Leamy, G.E. Pike and C.H. Seager (Elsevier New York 1982) pp 343–355

  14. J. Han, P.Q. Mantas, A.M.R. Senos, Defect chemistry and electrical characterisation of undoped and Mn-doped ZnO. J. Europ. Ceram. Soc. 22, 49–59 (2002)

    Article  Google Scholar 

  15. M. Rossinelli, F. Greuter, F. Schmuckle, Electrically active grain boundaries in ceramics: Varistors and capacitors. Br. Ceram. Proc. 41, 177–188 (1989)

    CAS  Google Scholar 

  16. S.-N. Bai, T.-Y. Tseng, Influence of sintering temperature on electrical properties of ZnO varistors. J. Appl. Phys. 74, 695–703 (1993)

    Article  CAS  ADS  Google Scholar 

  17. J.C. Simpson, J.F. Cordaro, Characterisation of deep levels in zinc oxide. J. Appl. Phys. 63, 1781–1783 (1988)

    Article  CAS  ADS  Google Scholar 

  18. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. Van Laarhoven, D.C. Look, Electrical characterisation of 1.8 MeV proton-bombarded ZnO. Appl. Phys. Lett. 79, 3074–3076 (2001)

    Article  CAS  ADS  Google Scholar 

  19. F.D. Auret, S.A. Goodman, M.J. Legodi, W.E. Meyer, D.C. Look, Electrical characterisation of vapour-phase-grown single-crystal ZnO. Appl. Phys. Lett. 80, 1340–1342 (2002)

    Article  CAS  ADS  Google Scholar 

  20. J.C. Simpson, J.F. Cordaro, Defect clusters in ZnO. J. Appl. Phys. 67(11), 6760–6763 (1990)

    Article  CAS  ADS  Google Scholar 

  21. J. Tanaka, S. Hishita, Deep levels near the grain boundary in a ZnO varistor: energy change due to electrical degradation. J. Am. Ceram. Soc. 73, 1425–1428 (1990)

    Article  CAS  Google Scholar 

  22. T.D. Chen, J.-R. Lee, H.L. Tuller and Y.-M.Chiang, Grain boundary dopants and heat treatment effects on the electrical properties of polycrystalline ZnO. in Electrically Based Characterisation, Mat. Res. Soc. Symp. Proc., ed. R.A. Gerhardt, S.R. Tylor and J. Garboczi (Material Research Society, Pittsburgh 1996) pp. 295–300

  23. A. Tanaka, K. Mukae, ICTS measurements of single grain boundaries in ZnO: Rare-earth varistor. J. Electroceramics 4(S1), 55–59 (1999)

    Article  Google Scholar 

  24. A. Rohatgi, S.K. Pang, T.K. Gupta, W.D. Straub, The Deep Level Transient Spectroscopy Studies of a ZnO Varistor as a Function of Annealing. J. Appl. Phys. 63(11), 5375–5379 (1988)

    Article  CAS  ADS  Google Scholar 

  25. Y. Ohbuchi, J. Yoshino, Y. Okamoto, J. Morimoto, Evaluation of interface states in ZnO varistors by spectral analysis of DLTS. Jpn. J. Appl. Phys 38 Part1(2A), 899–900 (1999)

    Article  ADS  Google Scholar 

  26. Y. Ohbuchi, T. Kawahara, Y. Okamoto, J. Morimoto, The study of interface states in ZnO varistors by injection pulse width dependence of transient response. Jpn. J. Appl. Phys. 39 Part 1(5A), 2665–2669 (2000)

    Article  ADS  Google Scholar 

  27. Y. Ohbuchi, T. Kawahara, Y. Okamoto, J. Morimoto, Characterization of interface states in degraded ZnO varistors. Jpn. J. Appl. Phys. 41, 190–196 (2002)

    Article  CAS  ADS  Google Scholar 

  28. K. Mukae, A. Ohi, A. Tanaka, Electronic interface states at grain boundaries in ZnO: Pr varistors by single grain boundary measurements. J. Europ. Cer. Soc. 21, 1871–1874 (2001)

    Article  CAS  Google Scholar 

  29. J. Fan, R. Freer, Deep level transient spectroscopy of ZnO varistors doped with aluminium oxide and/or silver oxide. J. Am. Ceram. Soc. 77, 2663–2668 (1994)

    Article  CAS  Google Scholar 

  30. R.A. Winston, J.F. Cordaro, Grain-boundary interface electron traps in commercial ZnO varistors. J. Appl. Phys. 68, 6495–6500 (1990)

    Article  CAS  ADS  Google Scholar 

  31. D.V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974)

    Article  CAS  ADS  Google Scholar 

  32. D.K. Schroder, Semiconductor material and device characterisation (3rd edition) John Wiley & Sons Ltd, (2006)

  33. P.R. Wilshaw, G.R. Booker, New results and an interpretation for SEM EBIC contrast arising from individual dislocations in silicon. Proceedings of the Microsc. Semicond. Mater. Conf. Oxford., 25–27 March Inst. Phys. Confr. Ser., 76, 329–336 (1985)

  34. P.N. Grillot, S.A. Ringel, E.A. Fitzgerald, G.P. Watson, Y.H. Xie, Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si hetero-structures. J. Appl. Phys. 77, 3248–3256 (1995)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Leach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, C., Vernon-Parry, K.D. & Ali, N.K. Deep level transient spectroscopy study of the effect of Mn and Bi doping on trap formation in ZnO. J Electroceram 25, 188–197 (2010). https://doi.org/10.1007/s10832-010-9614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-010-9614-7

Keywords

Navigation