Skip to main content
Log in

Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

BCA assay:

Bicinchoninic acid assay

BEH:

Ethylene bridged hybrid

C5Epi :

C5Epimerase

cDNA:

Complementary deoxyribonucleic acid

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

CS/DS:

Chondroitin sulfate/dermatan sulfate

ΔUA:

4-deoxy-α-L-threo-hex-4-enopryanosyluronic acid

GAG:

Glycosaminoglycan

GalN:

Galactosamine

GFAP:

Glial fibrillary acid protein

GlcA:

Glucuronic acid

IdoA:

Iduronic acid

GlcN:

Glucosamine

HRP:

Horseradish peroxidase

HFIP:

1,1,1,3,3,3-hexafluoro-2-propanol

HP/HS:

Heparin/heparan sulfate

HXA:

Hexylamine

KRTAP3-2:

Keratin associated protein 3-2

LC/MS:

Liquid chromatography/mass spectrometry

NDST:

N-deacetylase-N-sulfotransferase

PVDF:

Polyvinyl difluoride

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

RA:

Retinoic acid

RPS18:

Ribosomal protein S18

RNA:

Ribonucleic acid

S:

Sulfo

TrBA:

Tributylamine

UPLC:

Ultra-performance liquid chromatography

WB:

Western immunoblotting

HS2ST:

2-O-sulfotransferase

HS3ST:

3-O-sulfotransferase

HS6ST:

6-O-sulfotransferase

References

  1. Davies, J.A., Fisher, C.E., et al.: Glycosaminoglycans in the study of mammalian organ development. Biochem. Soc. Trans. 29, 166–171 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Linhardt, R.J., Toida, T.: Role of glycosaminoglycans in cellular communication. Accts. Chem. Res. 37, 431–438 (2004)

    Article  CAS  Google Scholar 

  3. Lanctot, P.M., Gage, F.H., et al.: The glycans of stem cells. Curr. Opin. Chem. Biol. 11, 373–380 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. Andrews, P.W., Martin, M.M., et al.: Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans. 33, 1526–1530 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. Damjanov, I.: Teratocarcinoma stem cells. Cancer Surv. 9, 303–319 (1990)

    PubMed  CAS  Google Scholar 

  6. Pierce, G.B.: Carcinoma is to embryology as mutation is to genetics. Amer. Zool. 25, 707–712 (1985)

    Google Scholar 

  7. Teshima, S., Shimosato, Y., et al.: Four new human germ cell lines. Lab. Investig. 59, 328–336 (1988)

    PubMed  CAS  Google Scholar 

  8. Damjanov, I., Horvat, B., et al.: Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT. Lab. Investig. 68, 220–232 (1993)

    PubMed  CAS  Google Scholar 

  9. Esko, J.D.: Genetic analysis of proteoglycan structure, function and metabolism. Curr. Opin. Cell Biol. 3, 805–816 (1991)

    Article  PubMed  CAS  Google Scholar 

  10. Linhardt, R.J., Claude, S.: Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Medic. Chem. 46, 2551–2564 (2003)

    Article  CAS  Google Scholar 

  11. Skidmore, M.A., Guimond, S.E., et al.: The activities of heparan sulfate and its analogue heparin are dictated by biosyntehsis, sequence and conformation. Connect. Tissue Res. 49, 140–144 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. Sugahara, K., Kitagawa, H.: Heparin and heparan sulfate biosynthesis. JUBMB Life. 54, 163–175 (2002)

    Article  CAS  Google Scholar 

  13. Packer, A.I., Mailutha, K.G., et al.: Regulation of the Hoxa4 and Hoxa5 genes in the embryonic mouse lung by retinoic acid and TGFβ1: implications for lung development and patterning. Dev. Dynam. 217, 62–74 (2000)

    Article  CAS  Google Scholar 

  14. Lee, D.C.W., Chan, K.W., et al.: RET receptor typosine kinase isoforms in kidney function and disease. Oncogene 21, 5582–5592 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Kumar, S., Duester, G.: Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev. Biol. 340, 67–74 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. Dahlstrand, J., Zimmerman, L.B., et al.: Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J. Cell Sci. 103, 589–597 (1992)

    PubMed  CAS  Google Scholar 

  17. Couchman, J.R.: Transmembrane signaling proteoglycans. Annu. Rev. Cell. Dev. Biol. 26, 89–114 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. Esko, J.D., Kimata, K., et al.: Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)

    Google Scholar 

  19. Hanemann, C.O., Kuhn, G., et al.: Expression of decorin mRNA in the nervous system of rat. J. Histochem. Cytochem. 41, 1383–1391 (1993)

    Article  PubMed  CAS  Google Scholar 

  20. Minor, K., Tang, X., et al.: Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neurobiol. Dis. 32, 88–95 (2008)

    Article  PubMed  CAS  Google Scholar 

  21. Troup, S., Njue, C., et al.: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin. Cancer Res. 9, 207–214 (2003)

    PubMed  CAS  Google Scholar 

  22. Lemons, M.L., Barua, S., et al.: Adaptation of sensory neurons to hyalectin and decorin proteoglycans. J. Neurosci. 25, 4964–4973 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Weber, C.K., Sommer, G., et al.: Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 121, 657–667 (2001)

    Article  PubMed  CAS  Google Scholar 

  24. Saunders, S., et al.: Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev. Biol. 190, 78–93 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. Williamson, D., Selfe, S., et al.: Cancer Res. 67, 57 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. Capurro, M.I., Shi, W., et al.: Processing by convertases is not required for glypican-3-induced stimulation of hepatocellular carcinoma growth. J. Biol. Chem. 280, 41201–41206 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. Filmus, J.: Glypicans in growth control and cancer. Glycobiology 11, 19R–23R (2001)

    Article  PubMed  CAS  Google Scholar 

  28. Sung, Y.K., Hwang, S.Y., et al.: Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci. 94, 259–262 (2005)

    Article  Google Scholar 

  29. Lai, J.P., Sandhu, D.S., et al.: Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47, 1211–1222 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Bishop, J.R., Schuksz, M., et al.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. Aikawa, J., Esko, J.D.: Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAcN-Deacetylase/ N-Sulfotransferase family. J. Biol. Chem. 274, 2690–2695 (1999)

    Article  PubMed  CAS  Google Scholar 

  32. Aikawa, J., Grobe, K., et al.: Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J. Biol. Chem. 276, 5876–5882 (2001)

    Article  PubMed  CAS  Google Scholar 

  33. Grobe, K., Ledin, J., et al.: Heparan sulfate and development: differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochim. Biophys. Acta 1573, 209–215 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Kusche-Gullberg, M., Kjellén, L.: Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struc. Biol. 13, 605–611 (2003)

    Article  CAS  Google Scholar 

  35. Filmus, J., Capurro, M.I., et al.: Glypicans. Genome Biol. 8, 224 (2008)

    Article  Google Scholar 

  36. Kraushaar, D.C., Yamaguchi, Y., et al.: Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J. Biol. Chem. 285, 5907–5916 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. Funderburgh, J.L.: Keratan sulfate biosynthesis. IUBMB Life. 54, 187–194 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. Funderburgh, J.L., Caterson, B., et al.: Keratan sulfate proteoglycan during embryonic development of the chicken cornea. Dev. Biol. 116, 267–277 (1986)

    Article  PubMed  CAS  Google Scholar 

  39. Brown, J.J., Papaioannou, V.E.: Ontogeny of hyaluronan secretion during early mouse development. Development 117, 483–492 (1993)

    PubMed  CAS  Google Scholar 

  40. Toole, B.P.: Hyaluronan in morphogenesis. Sem. Cell. Dev. Biol. 12, 79–87 (2001)

    Article  CAS  Google Scholar 

  41. Paluh, J.L., Dai, G., et al.: In search of the Holy Grail: engineering the stem cell niche. Eur. Pharm. Rev. 16, 28–33 (2011)

    Google Scholar 

  42. Li, B., Liu, H., et al.: Analysis of glycosaminoglycans in stem cell glycomics. Methods Mol. Biol. Humana Press 690, 285–300 (2011)

    Article  CAS  Google Scholar 

  43. Nairn, A.V., Kinoshita-Toyoda, A., et al.: Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J. Proteome Res. 6, 4374–4387 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. Nairn, A.V., York, W.S., et al.: Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 25, 17298–17313 (2008)

    Article  Google Scholar 

  45. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res. 29, 2002–2007 (2001)

    Article  Google Scholar 

  46. Zhang, F., Sun, P., et al.: Microscale isolation and analysis of heparin from plasma using an anion-exchange spin column. Anal. Biochem. 353, 284–286 (2006)

    Article  PubMed  CAS  Google Scholar 

  47. Shaya, D., Tocili, A., et al.: Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J. Biol. Chem. 281, 15525–15535 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Yoshida, E., Arakawa, S., et al.: Cloning, sequencing, and expression of the gene from bacillus circulans that codes for a heparinase that degrades both heparin and heparan sulfate. Biosci. Biotech. Biochem. 66, 1873–1879 (2002)

    Article  CAS  Google Scholar 

  49. Solakyildirim, K., Zhang, F., et al.: Ultraperformance liquid chromatography with electrospray ionization ion trap mass spectrometry for chondroitin disaccharide analysis. Anal. Biochem. 397, 24–28 (2010)

    Article  PubMed  CAS  Google Scholar 

  50. Yang, B., Weyers, A., et al.: Ultra-performace ion pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal. Biochem. 415, 59–66 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Empire State Stem Cell Fund for funding in the form of contract #C024334 and the National Institutes of Health for funding in the form of grant #3R01HL09697203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

RT-PCR primers for NCCIT characterizationa (DOC 29 kb)

Supplemental Figure 1

HP/HS disaccharide composition analysis of GAGs from NCCIT cells (DOC 919 kb)

Supplemental Figure 2

HP/HS disaccharide composition analysis of GAGs from NCCIT-RA cells (DOC 898 kb)

Supplemental Figure 3

CS/DS disaccharide composition analysis of GAGs from NCCIT cells (DOC 170 kb)

Supplemntal Figure 4

CS/DS disaccharide composition analysis of GAGs from NCCIT-RA cells (DOC 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasimli, L., Stansfield, H.E., Nairn, A.V. et al. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells. Glycoconj J 30, 497–510 (2013). https://doi.org/10.1007/s10719-012-9450-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9450-x

Keywords

Navigation