Skip to main content

Regulatory Functions of Heparan Sulfate in Stem Cell Self-Renewal and Differentiation

  • Chapter
  • First Online:
Proteoglycans in Stem Cells

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 9))

Abstract

Heparan sulfate (HS) is an extraordinarily diverse type of glycosaminoglycan (GAG) that is ubiquitously expressed on the cell surface and in the extracellular matrix where it interacts with a multitude of growth factors and morphogens. The association of HS chains with the various protein partners, though seemingly promiscuous, is surprisingly unique, and is largely dictated by the spatiotemporal expression of various modifying enzymes. Playing a central role in a myriad of cellular and physiological processes, its involvement in regulating developmental decisions is under intense investigation. Stem cells are distinguished by their characteristics of self-renewal and pluripotency. Self-renewal allows stem cells to proliferate indefinitely in their undifferentiated/early differentiated state, whereas pluripotency implies their capacity to differentiate into different cell lineages. Recent studies have provided important information regarding the role of HS in regulating the self-renewal and differentiation capacity of both embryonic and adult stem cells. Here we review the current advances that have been made in understanding the function and related structural changes of HS during stem cell differentiation and in deciphering the underlying molecular mechanisms with a focus on embryonic stem cells (ESCs), neuronal progenitor cells (NPC), and prostate stem cells (PrSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa J, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem 276:5876–5882

    Article  CAS  PubMed  Google Scholar 

  • Allen BL, Rapraeger AC (2003) Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. J Cell Biol 163:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279:12346–12354

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian R, Zhang X (2016) Mechanisms of FGF gradient formation during embryogenesis. Semin Cell Dev Biol 53:94–100

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RJ, ten Dam GB, van Kuppevelt TH, Lacaud G, Gallagher JT, Kouskoff V, Merry CLR (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26(12):3108–3118. https://doi.org/10.1634/stemcells.2008-0311

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  PubMed  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Brickman YG, Ford MD, Gallagher JT, Nurcombe V, Bartlett PF, Turnbull JE (1998a) Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J Biol Chem 273:4350–4359

    Article  CAS  PubMed  Google Scholar 

  • Brickman YG, Nurcombe V, Ford MD, Gallagher JT, Bartlett PF, Turnbull JE (1998b) Structural comparison of fibroblast growth factor-specific heparan sulfates derived from a growing or differentiating neuroepithelial cell line. Glycobiology 8:463–471

    Article  CAS  PubMed  Google Scholar 

  • Buresh RA, Kuslak SL, Rusch MA, Vezina CM, Selleck SB, Marker PC (2010) Sulfatase 1 is an inhibitor of ductal morphogenesis with sexually dimorphic expression in the urogenital sinus. Endocrinology 151:3420–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buresh-Stiemke RA, Malinowski RL, Keil KP, Vezina CM, Oosterhof A, Van Kuppevelt TH, Marker PC (2012) Distinct expression patterns of Sulf1 and Hs6st1 spatially regulate heparan sulfate sulfation during prostate development. Dev Dyn 241:2005–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    Article  CAS  PubMed  Google Scholar 

  • Condic ML (2014) Totipotency: what it is and what it is not. Stem Cells Dev 23:796–812

    Article  PubMed  Google Scholar 

  • Donjacour AA, Thomson AA, Cunha GR (2003) FGF-10 plays an essential role in the growth of the fetal prostate. Dev Biol 261:39–54

    Article  CAS  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Fico A, De Chevigny A, Egea J, Bosl MR, Cremer H, Maina F, Dono R (2012) Modulating Glypican4 suppresses tumorigenicity of embryonic stem cells while preserving self-renewal and pluripotency. Stem Cells 30:1863–1874

    Article  CAS  PubMed  Google Scholar 

  • Finley MF, Devata S, Huettner JE (1999) BMP-4 inhibits neural differentiation of murine embryonic stem cells. J Neurobiol 40:271–287

    Article  CAS  PubMed  Google Scholar 

  • Forsberg M, Holmborn K, Kundu S, Dagalv A, Kjellen L, Forsberg-Nilsson K (2012) Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem 287:10853–10862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RL (1982) Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J Embryol Exp Morphol 68:175–198

    CAS  PubMed  Google Scholar 

  • Gardner RL (1984) An in situ cell marker for clonal analysis of development of the extraembryonic endoderm in the mouse. J Embryol Exp Morphol 80:251–288

    CAS  PubMed  Google Scholar 

  • Gardner RL, Rossant J (1979) Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152

    CAS  PubMed  Google Scholar 

  • Gasimli L, Hickey AM, Yang B, Li G, dela Rosa M, Nairn AV, Kulik MJ, Dordick JS, Moremen KW, Dalton S et al (2014) Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta 1840:1993–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamazaki T, Kehoe SM, Nakano T, Terada N (2006) The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol Cell Biol 26:7539–7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Sasaki N, Ichimiya T, Miura T, Van Kuppevelt TH, Nishihara S (2012) 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contribute to the differentiation of mouse embryonic stem cells via Fas signaling. PLoS One 7:e43440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2011) Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 286:6241–6252

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Hamana T, Liu J, Wang C, An L, You P, Chang JY, Xu J, Jin C, Zhang Z et al (2015) Type 2 fibroblast growth factor receptor signaling preserves stemness and prevents differentiation of prostate stem cells from the basal compartment. J Biol Chem 290:17753–17761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes PJ, Fraher JP (2004) The development of the male genitourinary system. I. The origin of the urorectal septum and the formation of the perineum. Br J Plast Surg 57:27–36

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10:625–634

    Article  CAS  PubMed  Google Scholar 

  • Johnson CE, Crawford BE, Stavridis M, Ten Dam G, Wat AL, Rushton G, Ward CM, Wilson V, van Kuppevelt TH, Esko JD et al (2007) Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells 25:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  CAS  PubMed  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Shimakawa H, Sugahara K (1999) The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J Biol Chem 274:13933–13937

    Article  CAS  PubMed  Google Scholar 

  • Kraushaar DC, Yamaguchi Y, Wang L (2010) Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 285:5907–5916

    Article  CAS  PubMed  Google Scholar 

  • Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L (2012) Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 287:22691–22700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraushaar DC, Dalton S, Wang L (2013) Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 394:741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902

    Article  CAS  PubMed  Google Scholar 

  • Lanner F, Lee KL, Sohl M, Holmborn K, Yang H, Wilbertz J, Poellinger L, Rossant J, Farnebo F (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28:191–200

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311

    Article  CAS  PubMed  Google Scholar 

  • Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273:26265–26268

    Article  CAS  PubMed  Google Scholar 

  • Lindahl U, Cifonelli JA, Lindahl B, Roden L (1965) The role of serine in the linkage of heparin to protein. J Biol Chem 240:2817–2820

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19:158–161

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A 97:668–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki H, Yoshida K, Gotoh M, Sugioka S, Kikuchi N, Kwon YD, Tawada A, Maeyama K, Inaba N, Hiruma T et al (2003) Characterization of a heparan sulfate 3-O-sulfotransferase-5, an enzyme synthesizing a tetrasulfated disaccharide. J Biol Chem 278:26780–26787

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137

    Article  CAS  PubMed  Google Scholar 

  • Murphy KJ, Merry CL, Lyon M, Thompson JE, Roberts IS, Gallagher JT (2004) A new model for the domain structure of heparan sulfate based on the novel specificity of K5 lyase. J Biol Chem 279:27239–27245

    Article  CAS  PubMed  Google Scholar 

  • Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW et al (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 6:4374–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurcombe V, Ford MD, Wildschut JA, Bartlett PF (1993) Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260:103–106

    Article  CAS  PubMed  Google Scholar 

  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091

    Article  CAS  PubMed  Google Scholar 

  • Prins GS, Putz O (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation 76:641–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H, Miura S, Mishina Y, Zhao GQ (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 101:6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappolee DA, Basilico C, Patel Y, Werb Z (1994) Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development 120:2259–2269

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger AC (1995) In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding? Chem Biol 2:645–649

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger AC (2002) Heparan sulfate-growth factor interactions. Methods Cell Biol 69:83–109

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I (2017) Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 284:42–55

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Okishio K, Ui-Tei K, Saigo K, Kinoshita-Toyoda A, Toyoda H, Nishimura T, Suda Y, Hayasaka M, Hanaoka K et al (2008) Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 283:3594–3606

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S (2009) The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 4:e8262

    Google Scholar 

  • Sasaki N, Hirano T, Kobayashi K, Toyoda M, Miyakawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A, Nishihara S (2010) Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells. Biochem Biophys Res Commun 401:480–486

    Article  CAS  PubMed  Google Scholar 

  • Seifert AW, Harfe BD, Cohn MJ (2008) Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev Biol 318:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, Jenkins NA, Rosenberg RD (1999) Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci. J Biol Chem 274:5170–5184

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Smith A (2008) Capturing pluripotency. Cell 132:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AG, Hooper ML (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol 121:1–9

    Article  CAS  PubMed  Google Scholar 

  • ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13:1070–1075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson AA, Cunha GR (1999) Prostatic growth and development are regulated by FGF10. Development 126:3693–3701

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Uchimura K, Morimoto-Tomita M, Rosen SD (2006) Measuring the activities of the Sulfs: two novel heparin/heparan sulfate endosulfatases. Methods Enzymol 416:243–253

    Article  CAS  PubMed  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333

    Article  CAS  PubMed  Google Scholar 

  • Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  CAS  PubMed  Google Scholar 

  • Wuyts W, Van Hul W, Hendrickx J, Speleman F, Wauters J, De Boulle K, Van Roy N, Van Agtmael T, Bossuyt P, Willems PJ (1997) Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur J Hum Genet 5:382–389

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Hata T, He J, Maeda N (2005) Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain. Glycobiology 15:982–993

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Esko JD (1994) Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem 269:19295–19299

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, David G, Esko JD (1995) Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans. J Biol Chem 270:27127–27135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from NIH R01HL093339, U01CA225784, and R56AG062344. We appreciate Ms. Ilayda Ozsan for her English revision of the manuscript. The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Wang, L. (2021). Regulatory Functions of Heparan Sulfate in Stem Cell Self-Renewal and Differentiation. In: Götte, M., Forsberg-Nilsson, K. (eds) Proteoglycans in Stem Cells. Biology of Extracellular Matrix, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-73453-4_5

Download citation

Publish with us

Policies and ethics