Skip to main content
Log in

Maternal inheritance, epigenetics and the evolution of polyandry

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Growing evidence indicates that females actively engage in polyandry either to avoid genetic incompatibility or to bias paternity in favor of genetically superior males. Despite empirical support for the intrinsic male quality hypothesis, the maintenance of variation in male fitness remains a conundrum for traditional “good genes” models of sexual selection. Here, we discuss two mechanisms of non-Mendelian inheritance, maternal inheritance of mitochondria and epigenetic regulation of gene expression, which may explain the persistence of variation in male fitness traits important in post-copulatory sexual selection. The inability of males to transmit mitochondria precludes any direct evolutionary response to selection on mitochondrial mutations that reduce or enhance male fitness. Consequently, mitochondrial-based variation in sperm traits is likely to persist, even in the face of intense sperm competition. Indeed, mitochondrial nucleotide substitutions, deletions and insertions are now known to be a primary cause of low sperm count and poor sperm motility in humans. Paradoxically, in the field of sexual selection, female-limited response to selection has been largely overlooked. Similarly, the contribution of epigenetics (e.g., DNA methylation, histone modifications and non-coding RNAs) to heritable variation in male fitness has received little attention from evolutionary theorists. Unlike DNA sequence based variation, epigenetic variation can be strongly influenced by environmental and stochastic effects experienced during the lifetime of an individual. Remarkably, in some cases, acquired epigenetic changes can be stably transmitted to offspring. A recent study indicates that sperm exhibit particularly high levels of epigenetic variation both within and between individuals. We suggest that such epigenetic variation may have important implications for post-copulatory sexual selection and may account for recent findings linking sperm competitive ability to offspring fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH, Hales DB (2006) Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinol 147:3924–3935

    CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    PubMed  CAS  Google Scholar 

  • Archer MS, Elgar MA (1999) Female preference for multiple partners: sperm competition in the hide beetle, Dermestes maculatus (DeGeer). Anim Behav 58:669–675

    PubMed  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    PubMed  Google Scholar 

  • Ballard JWO, James AC (2004) Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proc R Soc Lond B 271:1197–1201

    CAS  Google Scholar 

  • Ballard JWO, Whitlock ME (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    PubMed  Google Scholar 

  • Barash DP, Lipton JE (2001) The myth of monogamy. Freeman, New York

    Google Scholar 

  • Bateman P (1998) Mate preference for novel partners in the cricket Gryllus bimaculatus. Ecol Entomol 23:473–475

    Google Scholar 

  • Beckman KB, Aimes BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Bestor TH (2003) Cytosine methylation mediates sexual conflict. Trends Genet 19:185–190

    PubMed  CAS  Google Scholar 

  • Birkhead TR, Moller AP, Sutherland WJ (1993) Why do females make It so difficult for males to fertilize their eggs. J Theor Biol 161:51–60

    Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Ann Rev Genet 35:125–148

    PubMed  CAS  Google Scholar 

  • Bretman A, Wedell N, Tregenza T (2004) Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc R Soc Lond B 271:159–164

    CAS  Google Scholar 

  • Brown JL (1998) The new heterozygosity theory of mate choice and the MHC. Genetica 104:215–221

    PubMed  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16

    PubMed  CAS  Google Scholar 

  • Bulmer MG, Parker GA (2002) The evolution of anisogamy: a game-theoretic approach. Proc R Soc Lond B 269:2381–2388

    CAS  Google Scholar 

  • Carra E et al (2004) Male infertility and mitochondrial DNA. Biochem Biophys Res Comm 322:333–339

    PubMed  CAS  Google Scholar 

  • Charlat S et al (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223

    PubMed  CAS  Google Scholar 

  • Charmantier A, Sheldon BC (2006) Testing models of mate choice evolution in the wild. Trends Ecol Evol 21:417–419

    PubMed  Google Scholar 

  • Chippindale AK, Gibson JR, Rice WR (2001) Negative genetic correlations for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc Natl Acad Sci USA 98:1671–1675

    PubMed  CAS  Google Scholar 

  • Chippindale AK, Rice WR (2001) Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc Natl Acad Sci USA 98:5677–5682

    PubMed  CAS  Google Scholar 

  • Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129

    PubMed  CAS  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad USA 103:17308–17312

    CAS  Google Scholar 

  • Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172–182

    PubMed  CAS  Google Scholar 

  • Delph LF, Touzet P, Bailey MF (2007) Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol 22:17–24

    PubMed  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet & Metabol 67:183–193

    CAS  Google Scholar 

  • Deininger PL, Moran JV, Batzer MA, Kazazian HH (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet & Devel 13:651–658

    CAS  Google Scholar 

  • Dowling DK, Nowostawski AL, Arnqvist G (2007) Effects of cytoplasmic genes on sperm viability and sperm morphology in a seed beetle: implications for sperm competition theory? J Evol Biol 20:358–368

    PubMed  CAS  Google Scholar 

  • Eakley AL, Houde AE (2004) Possible role of female discrimination against ‘redundant’ males in the evolution of colour pattern polymorphisms in guppies. Proc R Soc Lond B 271(suppl):S299–S301

    Google Scholar 

  • Eberhard WG (1980) Evolutionary consequences of intracellular organelle competition. Quart Rev Biol 55:231–249

    PubMed  CAS  Google Scholar 

  • Engqvist L (2006) Females benefit from mating with different males in the scorpionfly Panorpa cognata. Behav Ecol 17:435–440

    Google Scholar 

  • Evans JP, Marshall DJ (2005) Male-by-female interactions influence fertilization success and mediate the benefits of polyandry in the sea urchin Heliocidaris erythrogramma. Evolution 59:106–112

    PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Heinikoff S (2005) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Google Scholar 

  • Fisher DO, Double MC, Blomberg SP, Jennions MD, Cockburn A (2006) Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Nature 444:89–92

    PubMed  CAS  Google Scholar 

  • Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang SC, Petronis A (2006) Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet 79:67–84

    PubMed  CAS  Google Scholar 

  • Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425:714–717

    PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestart ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    PubMed  CAS  Google Scholar 

  • Frances D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Google Scholar 

  • Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature 383:224

    PubMed  CAS  Google Scholar 

  • Froman DP, Kirby JD (2005) Sperm mobility: phenotype in roosters (Gallus domesticus) determined by mitochondrial function. Biol Reprod 72:562–567

    PubMed  CAS  Google Scholar 

  • Froman DP, Pizzari T, Feltmann AJ, Castillo-Juarez H, Birkhead TR (2002) Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus. Proc R Soc Lond B 269:607–612

    Google Scholar 

  • García-González F, Simmons LW (2005a) Sperm viability matters in insect sperm competition. Curr Biol 15:271–275

    PubMed  Google Scholar 

  • García-González F, Simmons LW (2005b) The evolution of polyandry: intrinsic sire effects contribute to embryo viability. J Evol Biol 18:1097–1103

    PubMed  Google Scholar 

  • Gemmell NJ, Allendorf FW (2001) Mitochondrial mutations may decrease population viability. Trends Ecol Evol 16:115–117

    PubMed  Google Scholar 

  • Gemmell NJ, Metcalf VJ, Allendorf FW (2004) Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol Evol 19:238–244

    PubMed  Google Scholar 

  • Goldenthal MJ, Marin-Garcia J (2004) Mitochondrial signaling pathways: A receiver/integrator organelle. Mol Cell Biochem 262:1–16

    PubMed  CAS  Google Scholar 

  • Grayson DR, Jia XM, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102:9341–9346

    PubMed  CAS  Google Scholar 

  • Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708

    PubMed  CAS  Google Scholar 

  • Han KD, Sen SK, Wang JX, Callinan PA, Lee JN, Cordaux R, Liang P, Batzer MA (2005) Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucl Acids Res 33:4040–4052

    PubMed  CAS  Google Scholar 

  • Holliday R (2006) Epigenetics a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  • Hosken DJ, Garner TWJ, Tregenza T, Wedell N, Ward PI (2003) Superior sperm competitors sire higher-quality young. Proc R Soc Lond B 270:1933–1938

    CAS  Google Scholar 

  • Hunter FM, Birkhead TR (2002) Sperm viability and sperm competition in insects. Curr Biol 12:121–123

    PubMed  CAS  Google Scholar 

  • Hurst LD (1993) The incidences, mechanisms and evolution of cytoplasmic sex ratio distorters in animals. Biol Rev 68:121–193

    Google Scholar 

  • Ivy TM (2007) Good genes, genetic compatibility and the evolution of polyandry: use of the diallel cross to address competing hypotheses. J Evol Biol 20:479–487

    PubMed  CAS  Google Scholar 

  • Ivy TM, Sakaluk SK (2005) Polyandry promotes enhanced offspring survival in decorated crickets. Evolution 59:152–159

    PubMed  Google Scholar 

  • Ivy TM, Weddle CB, Sakaluk SK (2005) Females use self-referent cues to avoid mating with previous mates. Proc R Soc Lond B 272:2475–2478

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    PubMed  CAS  Google Scholar 

  • Jennions MD (1997) Female promiscuity and genetic incompatibility. Trends Ecol Evol 12:251–253

    Google Scholar 

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    PubMed  CAS  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    PubMed  CAS  Google Scholar 

  • Kokko H, Brooks R, Jennions MD, Morley J (2003) The evolution of mate choice and mating biases. Proc R Soc Lond B 270:653–664

    Google Scholar 

  • Lehmann L, Keller LF, Kokko H (2007) Mate choice evolution, dominance effects, and the maintenance of genetic variation. J Theor Biol 244:282–295

    PubMed  CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    PubMed  Google Scholar 

  • Madsen T, Shine R, Loman J, Håkansson T (1992) Why do female adders copulate so frequently? Nature 355:440–441

    Google Scholar 

  • Maklakov AA, Friberg U, Dowling DK, Arnqvist G (2006) Within-population variation in cytoplasmic genes affects female life span and aging in Drosophila melanogaster. Evolution 60:2081–2086

    PubMed  CAS  Google Scholar 

  • Maynard Smith J, Szathmary E (1995) The major transitions in evolution. Oxford University Press, London

    Google Scholar 

  • May-Panloup P, Chretien MF, Savagner F, Vasseur C, Jean M, Malthiery Y, Reynier P (2003) Increased sperm mitochondrial DNA content in male infertility. Hum Reprod 18:550–556

    PubMed  CAS  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176

    PubMed  CAS  Google Scholar 

  • Montiel-Sosa F, Ruiz-Pesini E, Enriquez JA, Marcuello A, Diez-Sanchez C, Montoya J, Wallace DC, Lopez-Perez MJ (2006) Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368:21–27

    PubMed  CAS  Google Scholar 

  • Moore FL, Reijo-Pera RA (2000) Male sperm motility dictated by mother’s mtDNA. Am J Hum Genet 67:543–548

    PubMed  CAS  Google Scholar 

  • Mousseau TA, Fox CW (1998) Preface. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford Univ. Press, New York

    Google Scholar 

  • Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue SI, Yonekawa H, Hayashi JI (2006) Mitochondria-related male infertility. Proc Natl Acad Sci USA 103:15148–15153

    PubMed  CAS  Google Scholar 

  • Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14:19–38

    PubMed  CAS  Google Scholar 

  • Newcomer SD, Zeh JA, Zeh DW (1999) Genetic benefits enhance the reproductive success of polyandrous females. Proc Natl Acad Sci USA 96:10236–10241

    PubMed  CAS  Google Scholar 

  • Olsson M, Shine R, Madsen T (1996) Sperm selection by females. Nature 383:585

    CAS  Google Scholar 

  • Parker GA (1992) Snakes and female sexuality. Nature 355:395–396

    Google Scholar 

  • Prasad NG, Bedhomme S, Day T, Chippindale AK (2007) An evolutionary cost of separate genders revealed by male-limited evolution. Am Nat 169:29–37

    PubMed  CAS  Google Scholar 

  • Price TA, Wedell N (2007) Selfish genetic elements and sexual selection: their impact on male fertility. Genetica (in press)

  • Radwan J (2007) Maintenance of genetic variation in sexual ornaments: a review of the mechanisms. Genetica (in press)

  • Rakyan VK, Beck S (2006) Epigenetic variation and inheritance in mammals. Curr Opin Genet Devel 16:573–577

    CAS  Google Scholar 

  • Rand DM, Clark AG, Kann LM (2001) Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 159:173–187

    PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    PubMed  CAS  Google Scholar 

  • Reinhold K (2004) Modeling a version of the good-genes hypothesis: female choice of locally adapted males. Org Diver Evol 4:157–163

    Google Scholar 

  • Rice WR, Chippindale AK (2002) The evolution of hybrid infertility: perpetual coevolution between gender-specific and sexually antagonistic genes. Genetica 116:179–188

    PubMed  CAS  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    PubMed  CAS  Google Scholar 

  • Roubertoux PL, Marcet B, Sluyter F, Verrier B (2003a) Mitochondrial DNA (mtDNA) and behavior: interaction between mitochondrial and nuclear genes, preliminary results from microarrays. Behav Genet 33:717

    Google Scholar 

  • Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003b) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69

    PubMed  CAS  Google Scholar 

  • Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B 263:1415–1421

    Google Scholar 

  • Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, Perez-Martos A, Montoya J, Alvarez E, Diaz M, Urrieis A, Montoro L, Lopez-Perez MJ, Enriquez JA (2000) Human mitochondrial DNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67:682–696

    PubMed  CAS  Google Scholar 

  • Simmons LW, Beveridge M, Wedell N, Tregenza T (2006) Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Mol Ecol 15:3817–3824

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    PubMed  CAS  Google Scholar 

  • Snook R (2005) Sperm in competition: not playing by the numbers. Trends Ecol Evol 20:46–53

    PubMed  Google Scholar 

  • Taggert DA, Shimmin GA, McCloud P, Temple-Smith PD (1999) Timing of mating, sperm dynamics, and ovulation in a wild population of agile Antechinus (Marsupialia: Dasyuridae). Biol Reprod 60:283–289

    Google Scholar 

  • Tarvin KA, Webster MS, Tuttle EM, Pruett-Jones S (2005) Genetic similarity of social mates predicts the level of extrapair paternity in splendid fairy-wrens. Anim Beh 70:945–955

    Google Scholar 

  • Thorburn DR (2004) Mitochondrial diseases: not so rare after all. Internal Med J 34:3–5

    CAS  Google Scholar 

  • Tomkins JL, Radwan J, Kotiaho JS, Tregenza T (2004) Genic capture and resolving the lek paradox. Trends Ecol Evol 19:323–328

    PubMed  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    PubMed  CAS  Google Scholar 

  • Tregenza T, Wedell N (2002) Polyandrous females avoid the costs of inbreeding. Nature 415:71–73

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    PubMed  CAS  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497

    PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    PubMed  CAS  Google Scholar 

  • Watson PJ (1991) Multiple paternity as genetic bet-hedging in female sierra dome spiders, Linyphia litigosa (Linyphiidae). Anim Behav 41:343–360

    Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on hippocampal transcriptome and anxiety-mediated behaviors in the offspring are reversible in adulthood. Proc Natl Acad Sci USA 103:3480–3485

    PubMed  CAS  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Wolf JB, Brodie III ED, Cheverud JM, Moore AJ, Wade MJ (1998) Evolutionary consequences of indirect genetic effects. Trends Ecol Evol 13:64–69

    Google Scholar 

  • Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 135:5–8

    PubMed  CAS  Google Scholar 

  • Zeh JA (2004) Sexy sons: a dead end for cytoplasmic genes. Proc R Soc Lond B Biol Sci (Suppl) 271:S306–S309

    CAS  Google Scholar 

  • Zeh JA, Newcomer SD, Zeh DW (1998) Polyandrous females discriminate against previous mates. Proc Natl Acad Sci USA 95:13732–13736

    PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proc R Soc Lond B 263:1711–1717

    Google Scholar 

  • Zeh JA, Zeh DW (1997) The evolution of polyandry II: post-copulatory defenses against genetic incompatibility. Proc R Soc Lond B 264:69–75

    Google Scholar 

  • Zeh JA, Zeh DW (2001) Reproductive mode and the genetic benefits of polyandry. Anim Behav 61:1051–1063

    Google Scholar 

  • Zeh JA, Zeh DW (2003) Toward a new sexual selection paradigm: polyandry, conflict and incompatibility (Invited article). Ethology 109:929–950

    Google Scholar 

  • Zeh JA, Zeh DW (2005) Maternal inheritance, sexual conflict and the maladapted male. Trends Genet 21:281–286

    PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (2006) Outbred embryos rescue inbred half siblings in mixed paternity broods of live-bearing females. Nature 439:201–203

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Trevor Pitcher for inviting us to contribute to this symposium and we thank Trevor and two anonymous reviewers for comments and suggestions that improved the manuscript. Our recent research on sexual selection has been funded by grants from the National Geographic Society (grant 5333-94) and the US National Science Foundation (MCB-0085335, DEB-0115555, IBN-0115986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne A. Zeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeh, J.A., Zeh, D.W. Maternal inheritance, epigenetics and the evolution of polyandry . Genetica 134, 45–54 (2008). https://doi.org/10.1007/s10709-007-9192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9192-z

Keywords

Navigation